Beyond Straight Lines: Contextualizing Lobachevsky's Parallel Postulate Through the Geometry of the "Bubu" Fishing Gear

Authors

  • Abdurrobbil Falaq Dwi Anggoro Magister Pendidikan Matematika, IKIP Siliwangi
  • Wardono Wardono Doctoral Program in Mathematics Education, Semarang State University
  • Scolastika Mariani Doctoral Program in Mathematics Education, Semarang State University
  • Bambang Eko Susilo Doctoral Program in Mathematics Education, Semarang State University

DOI:

https://doi.org/10.30862/jhm.v8i3.974

Keywords:

Learning trajectory, axiom of parallelism, Lobachevsky geometry, context, bubu

Abstract

The axiom of Lobachevsky's parallelism is one of the topics that students often find difficult. The purpose of this research is to design a learning trajectory about the Lobachevsky axiom of parallelism using the context of a valid, practical and effective traditional fishing gear "bubu". This research applies development studies which consist of three main phases: preliminary study: analysis and exploration; prototype development: design and construction; and the last stage of assessment: evaluation and reflection. The results of the study show that the learning trajectory of the Lobachevsky equation axiom using the context of traditional fishing gear "bubu" is valid, practical and effective to improve problem-solving skills for mathematics education students. The conclusion is that there are six steps to the learning trajectory, namely: First, identification of problems with the local cultural context; Second: representation of problems; Third: make a settlement plan; Fourth: implementing the plan; Fifth: evaluate the solution of the problem; and lastly, make a conclusion about the axiom of Lobachevsky's parallelism.

References

Abadi, A. P., Aisyah, D. S., Lestari, K. E., & Yudhanegara, M. R. (2023). Digital Puzzle Worksheet for Identifying Metacognition Level of Students: A Study of Gender Differences. European Journal of Educational Research, 12(2), 795–810. https://doi.org/10.12973/eu-jer.12.2.795

Agusdianita, N., Widada, W., Afriani, N. H., Herawati, H., Herawaty, D., & Nugroho, K. U. Z. (2021). The exploration of the elementary geometry concepts based on Tabot culture in Bengkulu. Journal of Physics: Conference Series, 1731(1). https://doi.org/10.1088/1742-6596/1731/1/012054

Anh, T. T. N., Nguyen, N. T., & Nguyen, A. T. T. (2023). The Impact of Online Self-Assessment on Learning Outcomes and Self-Assessment Skills Among Grade 11 Students in Vietnam. International Journal of Learning, Teaching and Educational Research, 22(4), 21–35. https://doi.org/10.26803/IJLTER.22.4.2

Baroody, A. J., Clements, D. H., & Sarama, J. (2022). Lessons Learned from 10 Experiments That Tested the Efficacy and Assumptions of Hypothetical Learning Trajectories. Education Sciences, 12(195).

Cheick Yacouba Rachid, C., & B. Telesphore, T. (2021). Modelling, Conception and Simulation of a Digital Watermarking System based on Hyperbolic Geometry. Signal & Image Processing : An International Journal, 12(4), 1–19. https://doi.org/10.5121/sipij.2021.12401

Eerde, H. (2013). Design research: Looking into the heart of mathematics education. Proceeding The First South East Asia Design, 1–11. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Design+research:+looking+into+the+heart+of+mathematics+education#0

Fahrurozi, A., Maesaroh, S., Suwanto, I., & Nursyahidah, F. (2018). Developing Learning Trajectory Based Instruction of the Congruence for Ninth Grade Using Central Java Historical Building. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 3(2), 78. https://doi.org/10.23917/jramathedu.v3i2.6616

Gravemeijer, K., & van Eerde, D. (2009). Gravemeijer, K. & Van Eerde, D. (2009). Design Research as a Means for Building a Knowledge Base for Teaching in Mathematics Education. The Elementary School Journal , 109 (5) . The Elementary School Journal, 109(5), 510–524. https://doi.org/https://eric.ed.gov/?id=EJ844056

Hendriyanto, A., Priatna, N., Juandi, D., Dahlan, J. A., Hidayat, R., Sahara, S., & Muhaimin, L. H. (2023). Learning Mathematics Using an Ethnomathematics Approach: A Systematic Literature Review. Journal of Higher Education Theory and Practice, 23(7), 59–74. https://doi.org/10.33423/jhetp.v23i7.6012

Herawaty, D., Khrisnawati, D., Widada, W., Mundana, P., & Anggoro, A. F. D. (2020). The cognitive process of students in understanding the parallels axiom through ethnomathematics learning. Journal of Physics: Conference Series, 1470(1). https://doi.org/10.1088/1742-6596/1470/1/012077

Husna, N., & Abidin, Z. (2021). Development of student worksheets on ethnomathematics-based trigonometry through Project-Based Learning models. In O. R., Y. E., M. null, S. null, R. null, E. null, I. null, E. E., P. G., M. N., I. N., O. C., K. K., S. R., M. V.M., & K. O. (Eds.), Journal of Physics: Conference Series (Vol. 1882, Issue 1). IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1882/1/012071

Hwang, W. Y., Zhao, L., Shadiev, R., Lin, L. K., Shih, T. K., & Chen, H. R. (2020). Exploring the effects of ubiquitous geometry learning in real situations. Educational Technology Research and Development, 68(3), 1121–1147. https://doi.org/10.1007/s11423-019-09730-y

Ivars, P., Fernández, C., Llinares, S., & Choy, B. H. (2018). Enhancing Noticing : Using a Hypothetical Learning Trajectory to Improve Pre-service Primary Teachers ’ Professional Discourse. EURASIA Journal of Mathematics, Science and Technology Education, 14(11). https://doi.org/10.29333/ejmste/93421

Jamshid, Bakhtiyarovich, E., Matluba, Burkhanovna, E., & Gulmira, Bakhtiyorovna, S. (2021). Application of Information and Communication Technologies in Solving Geometric Problems.

Kusuma, J. W., & Auliana, S. (2024). Development of Discovery-Based Etnobra (Ethnomathematics Geogebra) Geometry Learning Model to Improve Geometric Skills in Terms of Student Learning Styles and Domicile. Mathematics Teaching-Research Journal, 16(3), 25–57. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201238753&partnerID=40&md5=38e7fa2a0b3dd4296ff4d48181330130

Mutaqin, A., Syaifuddin, M., & Cholily, Y. M. (2021). Ethnomathematics Based Geometry Module Development With a Scientific Approach to Improve Students’ Metacognition Ability. IndoMath: Indonesia Mathematics Education, 4(1), 11. https://doi.org/10.30738/indomath.v4i1.8867

Muzaki, A., Hastuti, I. D., Fujiaturrahman, S., & Untu, Z. (2022). Development of an Ethnomathematics-Based e-Module to Improve Students’ Metacognitive Ability in 3D Geometry Topic. International Journal of Interactive Mobile Technologies, 16(3), 32–46. https://doi.org/10.3991/IJIM.V16I03.24949

Nickel, M., & Kiela, D. (2018). Learning continuous hierarchies in the Lorentz model of hyperbolic geometry. 35th International Conference on Machine Learning, ICML 2018, 9, 6071–6080.

Novitasari, D., Andi, T. M. S., Risfianty, D. K., Triutami, T. W., & Lu’Luilmaknun, U. (2023). Ethnomathematics in Sasaknese musical instruments: Exploration of geometry concept in Gendang Beleq. In D. A. (Ed.), AIP Conference Proceedings (Vol. 2619). American Institute of Physics Inc. https://doi.org/10.1063/5.0122581

Nugroho, K. U. Z., Sukestiyarno, Y. L., & Nurcahyo, A. (2021). Weaknesses of Euclidean Geometry: A Step of Needs Analysis of Non-Euclidean Geometry Learning through an Ethnomathematics Approach. Edumatika : Jurnal Riset Pendidikan Matematika, 4(2), 126–149. https://doi.org/10.32939/ejrpm.v4i2.1015

Nugroho, K. U. Z., Sukestiyarno, Y., Sugiman, & Asikin, M. (2022a). Students’ Spatial Ability In Learning Non-Euclid Geometry Through Ethnomathematics Approach. Journal of Positive …, 6(10), 10–35. https://journalppw.com/index.php/jpsp/article/view/12834

Nugroho, K. U. Z., Sukestiyarno, Y., Sugiman, & Asikin, M. (2022b). Students’ Spatial Ability In Learning Non-Euclid Geometry Through Ethnomathematics Approach. Journal of Positive School Psychology, 6(10), 10–35. https://journalppw.com/index.php/jpsp/article/view/12834

Nugroho, K. U. Z., Sukestiyarno, Y., Sugiman, S., & Asikin, M. (2022c). Students ’ Spatial Ability in Learning Non-Euclid Geometry Through Ethnomathematics Approach. Journal of Positive School Psychology, 6(10), 10–35.

Plomp, T., & Nieveen, N. (2013). Educational Design Research. Educational Design Research, July, 1–206. https://doi.org/10.1007/978-1-4614-3185-5_11

Purniati, T., Juandi, D., & Suhaedi, D. (2022). Ethnomathematics Study: Learning Geometry in the Mosque Ornaments. International Journal on Advanced Science, Engineering and Information Technology, 12(5), 2096–2104. https://doi.org/10.18517/ijaseit.12.5.17063

Putrawangsa, S. (2019). Desain Research sebagai Framework Desain Pembelajaran. Penerbit Sanabil.

Ramírez, K. L., Rodríguez, D. S. M., & Mateus, C. H. (2023). Problem-based Learning Activities as a Promotion of Local Cultural Awareness in A1 English Students. Mextesol Journal, 47(4), 1–10. https://doi.org/10.61871/mj.v47n4-10

Rawani, D., Putri, R. I. I., Zulkardi, & Susanti, E. (2023). RME-based local instructional theory for translation and reflection using of South Sumatra dance context. Journal on Mathematics Education, 14(3), 545–562. https://doi.org/10.22342/jme.v14i3.pp545-562

Rudenko, N., Palamar, S., Nezhyva, L., Bondarenko, G., & Shyrokov, D. (2021). The Use of ICT Tools to Organize Distance Learning of Mathematics for Primary School Students under COVID-19 Pandemic Conditions. In E. V., E. D., M. H.C., N. M., B. S., Z. G., Y. V., Y. V., & S. A. (Eds.), CEUR Workshop Proceedings (Vol. 3013, pp. 371–380). CEUR-WS. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121580846&partnerID=40&md5=9152f2652fedde07f9c801e1889dab83

Sagita, N. K. D. L., Nurhanurawati, N., & Noer, S. H. (2024). Efektivitas Bahan Ajar Berbasis Local Instruction Theory dengan Pendekatan Pendidikan Matematika Realistik untuk Meningkatkan Kemampuan Penalaran Matematis. MATHEdunesa, 13(2), 335–349. https://doi.org/10.26740/mathedunesa.v13n2.p335-349

Simon, M. A., Placa, N., Kara, M., & Avitzur, A. (2018). Empirically-based hypothetical learning trajectories for fraction concepts: Products of the Learning Through Activity research program. The Journal of Mathematical Behavior, 52, 188–200.

Simon, M. A., & Tzur, R. (2012). Explicating the Role of Mathematical Tasks in Conceptual Learning : An Elaboration of the Hypothetical Learning Trajectory. In Hypothetical learning trajectories. Routledge.

Simorangkir, F. M. A., Saragih, S., & Napitupulu, E. E. (2023). Pengembangan Local Instruction Theory Berbasis Model Pace untuk Melatihkan Kemampuan Pemecahan Masalah Matematis Siswa. Prisma, 12(2), 370. https://doi.org/10.35194/jp.v12i2.3267

Sukestiyarno, Y. L., Nugroho, K. U. Z., Sugiman, S., & Waluya, B. (2023a). Learning trajectory of non-Euclidean geometry through ethnomathematics learning approaches to improve spatial ability. Eurasia Journal of Mathematics, Science and Technology Education, 19(6). https://doi.org/10.29333/ejmste/13269

Sukestiyarno, Y. L., Nugroho, K. U. Z., Sugiman, S., & Waluya, B. (2023b). Learning trajectory of non-Euclidean geometry through ethnomathematics learning approaches to improve spatial ability. Eurasia Journal of Mathematics, Science and Technology Education, 19(6), 1–17. https://doi.org/10.29333/ejmste/13269

Supiarmo, M. G., Harmonika, S., Utama, M. W., & Tarmuzi, T. (2022). Cultural-Based Contextual Learning Design Material Area and Circumference of the Square Through Tools Ancak. Kontinu: Jurnal Penelitian Didaktik Matematika, 6(1), 48. https://doi.org/10.30659/kontinu.6.1.48-63

Tagaeva, D., Talipov, A., & Saipbekova, S. (2024). Formation of Schoolchildren Competencies when Teaching Geometry using Geometric Tasks with Life Content. Bulletin of Science and Practice, 10(6), 670–674. https://doi.org/10.33619/2414-2948/103/79

Widada, W., Herawaty, D., Andriyani, D. S., Marantika, R., Yanti, I. D., & Anggoro, A. F. D. (2020). The thinking process of students in understanding the concept of graphs during ethnomathematics learning The thinking process of students in understanding the concept of graphs during ethnomathematics learning. Journal of Physics: Conference Series, 1470, 1–8. https://doi.org/10.1088/1742-6596/1470/1/012072

Widada, W., Herawaty, D., Jumri, R., Wulandari, H., Aliza, F., & Anggoro, A. F. D. (2020). Students of the extended abstract in proving Lobachevsky’s parallel lines theorem. Journal of Physics: Conference Series, 1470(1). https://doi.org/10.1088/1742-6596/1470/1/012098

Widada, W., Nugroho, K. U. Z., Sari, W. P., & Pambudi, G. A. (2019a). The ability of mathematical representation through realistic mathematics learning based on ethnomathematics. Journal of Physics: Conference Series, 1318(3), 1–6. https://doi.org/10.1088/1742-6596/1179/1/012056

Widada, W., Nugroho, K. U. Z., Sari, W. P., & Pambudi, G. A. (2019b). The ability of mathematical representation through realistic mathematics learning based on ethnomathematics The ability of mathematical representation through realistic mathematics learning based on ethnomathematics. Journal of Physics: Conference Series, 1318, 1–8. https://doi.org/10.1088/1742-6596/1318/1/012073

Widyastuti, B. W., & Retnowati, E. (2021). Effects of Worked Example on Experts’ Procedural Skills in Solving Geometry Problems. Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020), 528(Icriems 2020), 338–343. https://doi.org/10.2991/assehr.k.210305.049

Yuliardi, R., & Rosjanuardi, R. (2021). Hypothetical learning trajectory in student’s spatial abilities to learn geometric transformation. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 6(3), 174–190. https://doi.org/10.23917/jramathedu.v6i3.13338

Published

2025-12-31

How to Cite

Anggoro, A. F. D., Wardono, W., Mariani, S., & Susilo, B. E. (2025). Beyond Straight Lines: Contextualizing Lobachevsky’s Parallel Postulate Through the Geometry of the "Bubu" Fishing Gear . Journal of Honai Math, 8(3), 455–478. https://doi.org/10.30862/jhm.v8i3.974

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.