Hypothetical learning trajectory on cylinder with Bloom's taxonomy perspective

Authors

DOI:

https://doi.org/10.30862/jhm.v8i1.848

Keywords:

Bloom’s taxonomy, conceptual understanding , cylinder, hypothetical learning trajectory

Abstract

Students’ persistent difficulties in understanding three-dimensional geometric figures, particularly cylinders, due to limited spatial visualization and difficulty identifying relationships among their elements, such as cylinder nets. These difficulties are often rooted in traditional instructional practices that emphasize procedural tasks over conceptual development. Despite various interventions, there remains a lack of structured instructional models based on cognitive development frameworks to support students’ conceptual growth in geometry. Addressing this gap, the present study aims to develop and evaluate a Hypothetical Learning Trajectory (HLT) grounded in Bloom’s taxonomy to enhance students' understanding of cylinders. This study employed a design research methodology consisting of three phases: preliminary design, design experiments, and retrospective analysis. Two experimental cycles were conducted with 28 fifth-grade students, categorized into low, moderate, and high levels of understanding. Data were collected through classroom observations, student worksheets, tests, and interviews, and analyzed qualitatively. The HLT consisted of four key learning activities: modeling a cylinder, identifying its elements, constructing the net, and solving application problems, mapped to Bloom’s cognitive levels of remembering, understanding, and applying. Findings revealed that students showed significant improvement in the first three activities, with increased spatial reasoning and conceptual clarity. However, difficulties persisted in the final activity involving reasoning and problem-solving. The results indicate that the proposed Bloom’s taxonomy-based HLT offers a systematic framework for guiding geometry instruction. This study contributes a practical and theoretically grounded instructional model that can support teachers in designing adaptive learning experiences. Further research is recommended to explore its application across diverse topics and student groups.

References

Akinboboye, J. T., & Ayanwale, M. A. (2021). Bloom taxonomy usage and psychometric analysis of classroom teacher made test. African Multidisciplinary Journal of Development, 10(1), 10–21. https://amjd.kiu.ac.ug/article-view.php?i=16&t=bloom-taxonomy-usage-and-psychometric-analysis-of-classroom-teacher-made-test

Ali, N. N., Ratnaningsih, N., & Prabawati, M. N. (2024). Desain hypothetical learning trajectory pada materi persegi dan persegipanjang untuk mengatasi learning obstacle. Jurnal Ilmiah Profesi Pendidikan, 9(2), 1249–1254. https://doi.org/10.29303/jipp.v9i2.1399

Amador, J., & Lamberg, T. (2013). Learning trajectories, lesson planning, affordances, and constraints in the design and enactment of mathematics teaching. Mathematical Thinking and Learning, 15(2), 146–170. https://doi.org/10.1080/10986065.2013.770719

Amir, M. F., & Wardana, M. D. K. (2017). Pengembangan domino pecahan berbasis open ended untuk meningkatkan kemampuan berpikir kreatif siswa SD. Aksioma: Jurnal Program Studi Pendidikan Matematika, 6(2), 178. https://doi.org/10.24127/ajpm.v6i2.1015

Arievitch, I. M. (2020). Reprint of: The vision of developmental teaching and learning and bloom’s taxonomy of educational objectives. Learning, Culture and Social Interaction, 27(November), 100473. https://doi.org/10.1016/j.lcsi.2020.100473

Avenilde, R. V. (2015). Enclyclopedia of mathematics education. In Journal of Research in Mathematics Education (Vol. 4, Issue 3). https://doi.org/10.17583/redimat.2015.1786

Ayuningtyas, I. N., Amir, M. F., & Wardana, M. D. K. (2024). Elementary school students’ layers of understanding in solving literacy problems based on sidoarjo context. Infinity Journal, 13(1), 157–174. https://doi.org/10.22460/infinity.v13i1.p157-174

Azis, A., Handayani, I. T., Ferniati, F., Anggriana, N., & Aisyah, A. (2023). Analysis of students’ cognitive difficulties based on the revised Bloom’s taxonomy in solving mathematics problems. Journal Focus Action of Research Mathematic (Factor M), 6(1), 117–138. https://doi.org/10.30762/factor_m.v6i1.1057

Bakker. (2018). Design research in education. In IEE Colloquium (Digest) (Issue 68). https://doi.org/10.1049/ic:19990398

Bangalan, R. C., Hipona, J. B., Bangalan, R. C., Hipona, J. B., Guzman, M. T., Journal, I., Education, I., Sevier, J., Morris, E., Bossé, M., Cadorna, E. A., Riboroso, R. A., Restituto, M., Frankina, M., Luzano, J. F. P., Texas, A., Texas, M. U., Lamichhane, B. R., Campus, S. M., … Situmeang, T. (2023). Promoting student conceptual understanding of mathematics in elementary classrooms. Psychology and Education: A Multidisciplinary Journal, 6(2), 22–39. https://doi.org/10.46360/cosmos.et.620251001

Boles, W., Jayalath, D., & Goncher, A. (2015). Categorising conceptual assessments under the framework of bloom’s taxonomy structured abstract background or context. 1–8. https://eprints.qut.edu.au/95630/21/95630.pdf

Çelik, R., Önal Karakoyun, G., & Asilturk, E. (2022). Evaluation of middle school 7th grade science skill-based questions according to the revised bloom taxonomy. International Online Journal of Educational Sciences, 2022(3), 705–716. https://doi.org/10.15345/iojes.2022.03.008

Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: the learning trajectories approach. In Learning and Teaching Early Math: The Learning Trajectories Approach. Routledge. https://doi.org/10.4324/9780203883389

Deciku, B., Musdi, E., Arnawa, I. M., & Suherman, S. (2022). Hypothetical learning trajectory sistem persamaan linear dua variabel dengan pendekatan realistic mathematics education. Jurnal Cendekia : Jurnal Pendidikan Matematika, 7(1), 185–196. https://doi.org/10.31004/cendekia.v7i1.1781

Doorman, L. M., & Gravemeijer, K. P. E. (2009). Emergent modeling: Discrete graphs to support the understanding of change and velocity. ZDM - International Journal on Mathematics Education, 41(1–2), 199–211. https://doi.org/10.1007/s11858-008-0130-z

Ebby, C. (2022). Teachers’ understanding of learning trajectories for formative assessment. January 2019. https://doi.org/10.3102/1437829

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. Educational Design Research, January 2006, 17–51. https://doi.org/10.4324/9780203088364-12

Ho, T. M. P. (2020). Measuring conceptual understanding, procedural fluency and integrating procedural and conceptual knowledge in mathematical problem solving. International Journal of Scientific Research and Management, 8(05), 1334–1350. https://doi.org/10.18535/ijsrm/v8i05.el02

Kholid, M. N., Imawati, A., Swastika, A., Maharani, S., & Pradana, L. N. (2021). How are students’ conceptual understanding for solving mathematical problem? Journal of Physics: Conference Series, 1776(1). https://doi.org/10.1088/1742-6596/1776/1/012018

Krathwohl, A. (2002). ( A revision of bloom’s taksonomy ) Sumber. Theory into Practice, 41(4), 212–219. https://amjd.kiu.ac.ug/article-view.php?i=16&t=bloom-taxonomy-usage-and-psychometric-analysis-of-classroom-teacher-made-test

Kristidhika, D. C., Cendana, W., Felix-Otuorimuo, I., & Müller, C. (2020). Contextual teaching and learning to improve conceptual understanding of primary students. Teacher in Educational Research, 2(2), 71. https://doi.org/10.33292/ter.v2i2.84

Magdalena, I., Nurchayati, A., Saputri, A. N. S., Amanda, N. Z. A., Habibie, N. H., Waluyo, S. N., & Nisa, D. K. (2023). Analisis taksonomi bloom dalam mengidentifikasi tingkat kesulitan pertanyaan soal dalam mata pelajaran matematika di sekolah dasar. Jurnal Pendidikan, Bahasa Dan Budaya, 2(3), 141–150. https://doi.org/10.55606/jpbb.v2i3.1988

Magfirotin, E. S., & Amir, M. F. (2024). Elementary school students’ conceptual and procedural knowledge in solving fraction problems. Jurnal Matematika Kreatif-Inovatif, 15(1), 109–122. https://journal.unnes.ac.id/nju/index.php/kreano.

Milinia, R., & Amir, M. F. (2022). The analysis of primary Students’ learning obstacles on plane figures’ perimeter and area using onto-semiotic approach. Al Ibtida: Jurnal Pendidikan Guru MI, 9(1), 19. https://doi.org/10.24235/al.ibtida.snj.v9i1.9958

Murtiyasa, B., & Sari, N. K. P. M. (2022). Analisis kemampuan pemahaman konsep pada materi bilangan berdasarkan taksonomi bloom. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 11(3), 2059. https://doi.org/10.24127/ajpm.v11i3.5737

Ningrum, D. P. N., Usodo, B., & Subanti, S. (2023). Students ’ mathematic al conceptual understanding : what. Jurnal Universitas Siliwangi, 2566(1), 020017. https://jurnal.unsil.ac.id/index.php/jp3m/article/viewFile/JOK61/1032

Nurmatova, S., & Altun, M. (2023). A comprehensive review of bloom’s taxonomy integration to enhancing novice EFL educators’ pedagogical impact. Arab World English Journal, 14(3), 380–388. https://doi.org/10.24093/awej/vol14no3.24

Rittle-Johnson, B., & Schneider, M. (2014). Developing conceptual and procedural knowledge of mathematics. The Oxford Handbook of Numerical Cognition, 1118–1134. https://doi.org/10.1093/oxfordhb/9780199642342.013.014

Rittle-Johnson, B., & Siegler, R. S. (2021). The relation between conceptual and procedural knowledge in learning mathematics: A review. The Development of Mathematical Skills, January 1998, 75–110. https://doi.org/10.4324/9781315784755-6

Rodrigues, V. F. (2023). Mathematical modeling & bloom’s taxonomy in the higher course of civil engineering. A Look At Development. https://doi.org/10.56238/alookdevelopv1-115

Shanty, N. O. (2016). Investigating students ’ development of learning. Journal on Mathematics Education, 7(2), 57–72. https://doi.org/10.22342/jme.7.2.3538.57-72

Simon, M. A. (2020). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145. https://doi.org/10.5951/jresematheduc.26.2.0114

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: an elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91–104. https://doi.org/10.1207/s15327833mtl0602_2

Steffe, L. P. (2004). On the construction of learning trajectories of children: the case of commensurate fractions. Mathematical Thinking and Learning, 6(2), 129–162. https://doi.org/10.1207/s15327833mtl0602_4

Sulfiah, S. K., Cholily, Y. M., & Subaidi, A. (2021). Professional competency: Pre-service mathematics teachers’ understanding toward probability concept. Jramathedu (Journal of Research and Advances in Mathematics Education), 6(3), 206–220. https://doi.org/10.23917/jramathedu.v6i3.13779

Telaumbanua, M. S., Berkat, D., Hulu, T., Surya, N., Zebua, A., Naibaho, T., & Simanjuntak, R. M. (2023). Evaluasi dan Penilaian pada Pembelajaran Matematika. 06(01), 4781–4792. https://doi.org/10.22342/jme.7.2.3538.57-72

van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Educational design research. Educational Design Research, 1–164. https://doi.org/10.4324/9780203088364

Wijaya, A., Elmaini, & Doorman, M. (2021). A learning trajectory for probability: A case of game-based learning. Journal on Mathematics Education, 12(1), 1–16. https://doi.org/10.22342/JME.12.1.12836.1-16

Wilson, P. H., Sztajn, P., Edgington, C., & Myers, M. (2015). Teachers’ uses of a learning trajectory in student-centered instructional practices. Journal of Teacher Education, 66(3), 227–244. https://doi.org/10.1177/0022487115574104

Downloads

Published

2025-04-30

How to Cite

Jannah, H. I., & Amir, M. F. (2025). Hypothetical learning trajectory on cylinder with Bloom’s taxonomy perspective. Journal of Honai Math, 8(1), 89–114. https://doi.org/10.30862/jhm.v8i1.848

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.