Study of the efficiency of ZnAl2O4 as green nanocatalyst

Authors

  • Damiana Nofita Birhi Universitas Flores
  • Antonia Fransiska Laka Universitas Flores

DOI:

https://doi.org/10.30862/inornatus.v4i1.584

Keywords:

Green catalyst, synthesis catalyst method, ZnAl2O4, nanocatalyst

Abstract

Waste from chemical reactions is still a hot issue to be discussed today. Green chemistry in its concept offers catalysts as an alternative to reducing waste resulting from chemical reactions. This literature study aims to examine the method of making ZnAl2O4 nanocatalysts and doping materials that are more effective in various reactions by considering the advantages and disadvantages of each. The content of the study includes the ZnAl2O4 nanocatalyst synthesis method, combination catalyst, and catalytic effectiveness in chemical reactions. Combustion, sol-gel, co-precipitation, hydrothermal, and microwave are the most common methods in the synthesis of ZnAl2O4. The use of precursors, fuel, and precipitating agents are very important factors when using combustion, sol-gel, and co-precipitation methods. Other factors that need to be considered are the raw material ratio, pH, and calcination temperature. The pH of the solution is 6-9 and the calcination temperature of 600oC – 800oC is the ideal point for producing nanocatalyst. The calcination temperature is lower to 300oC – 500oC when using hydrothermal and microwave as a synthesis method. ZnAl2O4 nanocatalyst has been identified as having good catalytic activity, but not higher than ZnAl2O4 combined with other catalysts. The combination of a catalyst with ZnAl2O4 spinel in hydrogenation, dehydrogenation, esterification, degradation, and organic synthesis has high catalytic activity with a conversion rate and selectivity of >70%.

References

Abd-Allah, A., Amin, A., Youssef, A., & Ahmed, Y. (2022). Fabrication of zinc aluminate (ZnAl2O4) nanoparticles from solid industrial wastes. Egyptian Journal of Pure and Applied Science, 60(2), 14–26. https://doi.org/10.21608/ejaps.2022.132250.1032

Akika, F. Z., Benamira, M., Lahmar, H., Trari, M., Avramova, I., & Suzer. (2020a). Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight. Surfaces and Interfaces, 18, 100406. https://doi.org/10.1016/j.surfin.2019.100406

Akika, F. Z., Benamira, M., Lahmar, H., Trari, M., Avramova, I., & Suzer. (2020b). Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight. Surfaces and Interfaces, 18. https://doi.org/10.1016/j.surfin.2019.100406

Bhavani, P., Manikandan, A., Paulraj, P., Dinesh, A., Durka, M., & Antony, S. A. (2017). Okra (Abelmoschus esculentus) plant extract-assisted combustion synthesis and characterization studies of spinel ZnAl 2 O 4 Nano-Catalysts. Journal of Nanoscience and Nanotechnology, 18(6), 4072–4081. https://doi.org/10.1166/jnn.2018.15217

Birhi, D. N., Iftitah, E. D., & Warsito, W. (2023). Use of CoO/ZnAl2O4 catalysts and microwaved assisted in vanillin synthesis. Jurnal Kimia Valensi, 9(1), 76–88. https://doi.org/10.15408/jkv.v9i1.29727

Chaudhary, A., Mohammad, A., & Mobin, S. M. (2018a). Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Materials Science and Engineering: B, 227, 136–144. https://doi.org/10.1016/j.mseb.2017.10.009

Chaudhary, A., Mohammad, A., & Mobin, S. M. (2018b). Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 227, 136–144. https://doi.org/10.1016/j.mseb.2017.10.009

Dai, Q., Zhang, Z., Zhan, T., Hu, Z. T., & Chen, J. (2018). Catalytic ozonation for the degradation of 5-sulfosalicylic acid with spinel-type ZnAl2O4 prepared by hydrothermal, Sol-Gel, and coprecipitation methods: A comparison study. ACS Omega, 3(6), 6506–6512. https://doi.org/10.1021/acsomega.8b00263

Dhinagaran, M., Elakkiya, V., & Sumathi, S. (2021). Tailor made ZnAl2O4–CeO2 hetero structure as an efficient photo catalyst for environmental remediation. Optical Materials, 111, 110546. https://doi.org/10.1016/j.optmat.2020.110546

Diaz-Torres, L. A., Mtz-Enriquez, A. I., Garcia, C. R., Coutino-Gonzalez, E., Oliva, A. I., Vallejo, M. A., Cordova, T., Gomez-Solis, C., & Oliva, J. (2020). Efficient hydrogen generation by ZnAl2O4 nanoparticles embedded on a flexible graphene composite. Renewable Energy, 152, 634–643. https://doi.org/10.1016/j.renene.2020.01.074

Dwibedi, D., Murugesan, C., Leskes, M., & Barpanda, P. (2018). Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O4) spinel. Materials Research Bulletin, 98, 219–224. https://doi.org/10.1016/j.materresbull.2017.10.010

El-araby, R., Ibrahim, M. A., Abdelkader, E., Ismail, E. H., & Abdelsalam, A. M. (2023). Zinc aluminate nano-catalyst for green fuel production from used cooking vegetable oil. International Journal of Research in Engineering, Science and Management, 6(11), 65–72. https://journal.ijresm.com/index.php/ijresm/article/view/2857

Eskandari Azar, B., Ramazani, A., Taghavi Fardood, S., & Morsali, A. (2020). Green synthesis and characterization of ZnAl2O4@ZnO nanocomposite and its environmental applications in rapid dye degradation. Optik, 208, 164129. https://doi.org/10.1016/j.ijleo.2019.164129

Fahoul, Y., Zouheir, M., Tanji, K., & Kherbeche, A. (2022). Synthesis of a novel ZnAl2O4/CuS nanocomposite and its characterization for photocatalytic degradation of acid red 1 under UV illumination. Journal of Alloys and Compounds, 889, 161708. https://doi.org/10.1016/j.jallcom.2021.161708

Farhadi, S., & Panahandehjoo, S. (2010). Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: A novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions. Applied Catalysis A: General, 382(2), 293–302. https://doi.org/10.1016/j.apcata.2010.05.005

Gahane, N. M., Chaware, P. J., & Rewatkar, K. G. (2023). Structural, morphological, and photoluminescence study of Europium doped spinel ZnAl2O4 phosphors. International Journal of Chemistry, Mathematics and Physics, 7(1), 01–06. https://doi.org/10.22161/ijcmp.7.1.1

Gharibe, S. (2020). ZnAl2O4/SiO2 as an efficient nanocatalyst for esterification of phthalic anhydride by 2-Ethylhexanol. Iranian Journal of Science and Technology, Transaction A: Science, 44(5), 1349–1355. https://doi.org/10.1007/s40995-020-00899-z

Ghribi, F., Sehailia, M., Aoudjit, L., Touahra, F., Zioui, D., Boumechhour, A., Halliche, D., Bachari, K., & Benmaamar, Z. (2020). Solar-light promoted photodegradation of metronidazole over ZnO-ZnAl2O4 heterojunction derived from 2D-layered double hydroxide structure. Journal of Photochemistry and Photobiology A: Chemistry, 397(March), 112510. https://doi.org/10.1016/j.jphotochem.2020.112510

Habibi, M. K., Rafiaei, S. M., Alhaji, A., & Zare, M. (2021). ZnAl2O4: Ce3+ phosphors: Study of crystal structure, microstructure, photoluminescence properties and efficient adsorption of congo red dye. Journal of Molecular Structure, 1228. https://doi.org/10.1016/j.molstruc.2020.129769

Han, M., Wang, Z., Xu, Y., Wu, R., Jiao, S., Chen, Y., & Feng, S. (2018). Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method. Materials Chemistry and Physics, 215, 251–258. https://doi.org/10.1016/j.matchemphys.2018.05.029

Huang, S., Wei, Z., Wu, X., & Shi, J. (2020). Optical properties and theoretical study of Mn doped ZnAl2O4 nanoparticles with spinel structure. Journal of Alloys and Compounds, 825, 154004. https://doi.org/10.1016/j.jallcom.2020.154004

Huš, M., Dasireddy, V. D. B. C., Strah Štefan?i?, N., & Likozar, B. (2017). Mechanism, kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts. Applied Catalysis B: Environmental, 207, 267–278. https://doi.org/10.1016/j.apcatb.2017.01.077

Ibrahim, M. A., El-Araby, R., Abdelkader, E., Abdelsalam, A. ., & Ismail, E. H. (2021). Fuel range hydrocarbon synthesized by hydrocracking of waste cooking oil via Co/Zn-AL2O4 nano particles. Egyptian Journal of Applied Science, 36(9), 43–55. https://doi.org/10.21608/ejas.2021.220044

Ishii, S., Nakane, T., Furusawa, T., & Naka, T. (2016). Synthesis of single-phase ZnAl2O4 nanoparticles via a wet chemical approach and evaluation of crystal structure characteristics. Crystal Research&Technology, 51(5), 324–332.

Karoui, L., Smari, M., & Mnasri, T. (2024). The effect of the gelation temperature on the structural, magnetic and magnetocaloric properties of perovskite nanoparticles manufactured using the sol-gel method. RSC Advances, 14(16), 11456–11469. https://doi.org/10.1039/d4ra01086h

Liu, L., Lin, Z., Lin, S., Chen, Y., Zhang, L., Chen, S., Zhang, X., Lin, J., Zhang, Z., Wan, S., & Wang, Y. (2021). Conversion of syngas to methanol and DME on highly selective Pd/ZnAl2O4 catalyst. Journal of Energy Chemistry, 58, 564–572. https://doi.org/10.1016/j.jechem.2020.10.003

Liu, X., Wang, M., Yin, H., Hu, J., Cheng, K., Kang, J., Zhang, Q., & Wang, Y. (2020). Tandem catalysis for hydrogenation of Co and Co2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catalysis, 10(15), 8303–8314. https://doi.org/10.1021/acscatal.0c01579

Macedo, H. P., Medeiros, R. L. B. A., Nascimento, R. A. B., Oliveira, A. A. S., Figueredo, G. P., Braga, R. M., & Melo, D. M. A. (2019). Study of ZnAl2O4 spinel nanoparticles synthesized using gelatin as organic precursor. Ceramica, 65(374), 180–184. https://doi.org/10.1590/0366-69132019653742620

Manikandan, A., Durka, M., Amutha Selvi, M., & Arul Antony, S. (2016). Aloe vera plant extracted green synthesis, structural and opto-magnetic characterizations of spinel CoxZn1-xAl2O4 nano-catalysts. Journal of Nanoscience and Nanotechnology, 16(1), 357–373. https://doi.org/10.1166/jnn.2016.10621

Matveyeva, A. N., Omarov, S. O., Nashchekin, A. V., Popkov, V. I., & Murzin, D. Y. (2022). Catalyst supports based on ZnO-ZnAl2O4 nanocomposites with enhanced selectivity and coking resistance in isobutane dehydrogenation. Dalton Transactions, 51(32), 12213–12224. https://doi.org/10.1039/d2dt02088b

Menon, S. G., Choudhari, K. S., Shivashankar, S. A., Chidangil, S., & Kulkarni, S. D. (2017). Microwave solution route to ceramic ZnAl2O4 nanoparticles in 10 minutes: Inversion and photophysical changes with thermal history. New Journal of Chemistry, 41(13), 5420–5428. https://doi.org/10.1039/c7nj01006k

Menon, S. G., Kunti, A. K., Kulkarni, S. D., Kumar, R., Jain, M., Poelman, D., Joos, J. J., & Swart, H. C. (2020). A new microwave approach for the synthesis of green emitting Mn2+-doped ZnAl2O4: A detailed study on its structural and optical properties. Journal of Luminescence, 226, 117482. https://doi.org/10.1016/j.jlumin.2020.117482

Mirbagheri, S. A., Masoudpanah, S. M., & Alamolhoda, S. (2020). Structural and optical properties of ZnAl2O4 powders synthesized by solution combustion method: Effects of mixture of fuels. Optik, 204, 164170. https://doi.org/10.1016/j.ijleo.2020.164170

Mohanty, P., Mohapatro, S., Mahapatra, R., & Mishra, D. K. (2021). Low cost synthesis route of spinel ZnAl2O4. Materials Today: Proceedings, 35(3), 130–132. https://doi.org/10.1016/j.matpr.2020.03.508

Mohaqeq, M., Safaei-Ghomi, J., Shahbazi-Alavi, H., & Teymuri, R. (2017). ZnAl2O4 Nanoparticles as Efficient and Reusable Heterogeneous Catalyst for the Synthesis of 12-phenyl-8,12-dihydro-8,10-dimethyl-9H-naphtho[1?,2?:5,6] pyrano[2,3-d] pyrimidine-9,11-(10H)-diones Under Microwave Irradiation. Polycyclic Aromatic Compounds, 37(1), 52–62. https://doi.org/10.1080/10406638.2015.1088044

N, D. H., Menon, S. G., Choudhari, K. S., Shivashankar, S. A., C, S., & Kulkarni, S. D. (2018). Cr-doped ZnAl2O4: Microwave solution route for ceramic nanoparticles from metalorganic complexes in minutes. Ceramics, 38(1), 42–49. https://doi.org/10.1111/ijlh.12426

Nasr, M., Viter, R., Eid, C., Warmont, F., Habchi, R., Miele, P., & Bechelany, M. (2016). Synthesis of novel ZnO/ZnAl2O4 multi co-centric nanotubes and their long-term stability in photocatalytic application. RSC Advances, 6(105), 103692–103699. https://doi.org/10.1039/c6ra22623j

Nitha, T. V., & Britto, S. (2023). The green preparation and characterization of nanocrystalline ZnAl2O4 And its superior catalytic activities in the synthesis of benzimidazole derivatives. RASAYAN Journal of Chemistry, 16(02), 653–659. https://doi.org/10.31788/rjc.2023.1628283

Nofita Birhi, D., Qisthi Ismail, A., Dhiaul Iftitah, E., & Warsito, W. (2021). One-pot catalytic oxidation for transforming eugenol to vanillin using ZnAl2O4 catalyst. The Journal of Pure and Applied Chemistry Research, 10(3), 203–213. https://doi.org/10.21776/ub.jpacr.2021.010.03.622

Nuayi, A. W. (2017). Sintesis Nanopartikel Besi (III) Oksida (Fe2O3) dengan Menggunakan Salt-Assisted Combustion Method (SACM). Jurnal Entropi, 12(1), 1–6.

Padmapriya, G., & Amudhavalli, M. (2020). Synthesis and characterization studies of spinel ZnAl 2 O 4 nanoparticles prepared by Aloe vera plant extracted combustion method. Malaya Journal of Matematik, S(2), 2089–2091. https://www.malayajournal.org/articles/MJM0S200537.pdf

Peymanfar, R., & Fazlalizadeh, F. (2020). Microwave absorption performance of ZnAl2O4. Chemical Engineering Journal, 402, 126089. https://doi.org/10.1016/j.cej.2020.126089

Peymanfar, R., & Fazlalizadeh, F. (2021). Fabrication of expanded carbon microspheres/ZnAl2O4 nanocomposite and investigation of its microwave, magnetic, and optical performance. Journal of Alloys and Compounds, 854, 157273. https://doi.org/10.1016/j.jallcom.2020.157273

Priya, R., Negi, A., Singla, S., & Pandey, O. P. (2020). Luminescent studies of Eu doped ZnAl2O4 spinels synthesized by low-temperature combustion route. Optik, 204(December 2019), 164173. https://doi.org/10.1016/j.ijleo.2020.164173

Shahmirzaee, M., Shafiee Afarani, M., Iran Nejhad, A., & Arabi, A. M. (2019). Microwave-assisted combustion synthesis of ZnAl2O4 and ZnO nanostructure particles for photocatalytic wastewater treatment. Particulate Science and Technology, 37(1), 110–117. https://doi.org/10.1080/02726351.2017.1350772

Silver, J., Lubis, S., & Ramli, M. (2023). Green synthesis, characterization, and photocatalytic activity of zinc oxide nanoparticles on photodegradation of naphthol blue black dye. Jurnal Kimia Sains Dan Aplikasi, 26(9), 363–371. https://doi.org/10.14710/jksa.26.9.363-371

Singh, S. B., & Tandon, P. K. (2014). Catalysis : A Brief Review on Nano-Catalyst. Journal of Energy and Chemical Engineering, 2(3), 106–115.

Sitohang, F., Aziz, Y., & Zultiniar. (2016). Sintesis Hidroksiapatit dari precipitated calcium carbonate (PCC) kulit telur ayam ras melalui metode hidrotermal. Jom FTEKNIK, 3(2), 1–7. https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/10316

Somwanshi, S. B., Somvanshi, S. B., & Kharat, P. B. (2020). Nanocatalyst: A brief review on synthesis to applications. Journal of Physics: Conference Series, 1644(1), 0–7. https://doi.org/10.1088/1742-6596/1644/1/012046

Suwanboon, S., Amornpitoksuk, P., Rattana, T., & Randorn, C. (2020). Investigation of g-C3N4/ZnAl2O4 and ZnO/ZnAl2O4 nanocomposites: From synthesis to photocatalytic activity of pollutant dye model. Ceramics International, 46(14), 21958–21977. https://doi.org/10.1016/j.ceramint.2020.04.243

Tangcharoen, T., T-Thienprasert, J., & Kongmark, C. (2021). Photocatalytic performance of Fe-substituted ZnAl2O4 powders under sunlight irradiation on degradation of industrial dyes. International Journal of Applied Ceramic Technology, 18(4), 1125–1143. https://doi.org/10.1111/ijac.13765

Tian, Q., Fang, G., Ding, L., Ran, M., Zhang, H., Pan, A., Shen, K., & Deng, Y. (2020). ZnAl2O4/Bi2MoO6 heterostructures with enhanced photocatalytic activity for the treatment of organic pollutants and eucalyptus chemimechanical pulp wastewater. Materials Chemistry and Physics, 241. https://doi.org/10.1016/j.matchemphys.2019.122299

Tran, M. T., Trung, D. Q., Tu, N., Anh, D. D., Thu, L. T. H., Du, N. V., Quang, N. V., Huyen, N. T., Kien, N. D. T., Viet, D. X., Hung, N. D., & Huy, P. T. (2021). Single-phase far-red-emitting ZnAl2O4:Cr3+ phosphor for application in plant growth LEDs. Journal of Alloys and Compounds, 884, 1–13. https://doi.org/10.1016/j.jallcom.2021.161077

Umamahesh, B., Mandlimath, T. R., & Sathiyanarayanan, K. I. (2015). A novel, facile, rapid, solvent free protocol for the one pot green synthesis of chromeno[2,3-d]pyrimidines using reusable nano ZnAl2O4 – NOSE approach and their photophysical studies. RCS Advances, 5(9), 6578–6587.

Venkatesh, R., Yadav, L. S. R., Dhananjaya, N., & Jayasheelan, A. (2021). Green combustion synthesis of ZnAl2O4:Eu3+ nanoparticle for photocatalytic activity. Materials Today: Proceedings, 49(xxxx), 583–587. https://doi.org/10.1016/j.matpr.2021.04.508

Wang, A., Wang, J., Lu, C., Xu, M., Lv, J., & Wu, X. (2018). Esterification for biofuel synthesis over an eco-friendly and efficient kaolinite-supported SO42?/ZnAl2O4 macroporous solid acid catalyst. Fuel, 234, 430–440. https://doi.org/10.1016/j.fuel.2018.07.041

Ye, A., Li, Z., Ding, J., Xiong, W., & Huang, W. (2021). Synergistic Catalysis of Al and Zn sites of spinel ZnAl2O4Catalyst for CO hydrogenation to methanol and dimethyl ether. ACS Catalysis, 11, 10014–10019. https://doi.org/10.1021/acscatal.1c02742

Zhang, L., Yan, J., Zhou, M., Yang, Y., & Liu, Y. N. (2013). Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl 2 O 4 composite hollow microspheres. Applied Surface Science, 268, 237–245. https://doi.org/10.1016/j.apsusc.2012.12.069

Zhang, X. H., Liu, C., Ke, C., Liu, L., Hao, X., Wu, Y., Wan, S., Wang, S., & Wang, Y. (2019). Hydrothermally stable ZnAl2O4 nanocrystals with controlled surface structures for the design of long-lasting and highly active/selective PdZn catalysts. Green Chemistry, 21(24), 6574–6578. https://doi.org/10.1039/c9gc02483b

Zhao, H., Dong, Y., Jiang, P., Wang, G., Zhang, J., & Zhang, C. (2015). ZnAl2O4 as a novel high-surface-area ozonation catalyst: One-step green synthesis, catalytic performance and mechanism. Chemical Engineering Journal, 260, 623–630. https://doi.org/10.1016/j.cej.2014.09.034

Downloads

Additional Files

Published

2024-06-07