Antagonism and mycoparasitism mechanism of T. harzianum against pathogenic fungus species of F. oxysporum and Capnodium sp.

Authors

  • Ali Mustofa Universitas PGRI Ronggolawe Tuban, Indonesia
  • Utami Sri Hastuti Universitas Negeri Malang, Indonesia

DOI:

https://doi.org/10.30862/inornatus.v4i1.581

Keywords:

Antagonistic fungi, Capnodium sp, F. oxysporum, pathogenic fungi, T. harzianum

Abstract

The purpose of this study was to test the ability of T. harzianum to inhibit the growth of pathogenic mold species and to determine the effectiveness of T. harzianum mold species in inhibiting the growth of pathogenic molds, as well as investigate how T. harzianum and pathogenic molds interact with each other. The Microbiology Laboratory of the Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Malang, is where this research was conducted. The dual culture method was used for this test by using Czapek Agar (CA) medium. The isolated molds were then incubated for 4x24 hours at 25O–27OC. After that, the antagonism power was calculated. The results of macroscopic and microscopic observations were used to assess the mechanism of T. harzianum mold antagonism against pathogenic molds. The results showed that Trichoderma mold species were more resistant to the pathogenic mold Fusarium oxysporum than the pathogenic mold Capnodium. The antagonistic power of T. harzianum was 80%, with the antagonistic power of Capnodium sp. at 66.7%. The mechanism of mycoparasitism occurs when the hyphae of T. harzianum attach or entangle the hyphae of pathogenic molds, causing damage to the hyphal structure and inhibiting the growth of pathogenic molds.

References

Ainy, E. Q., Ratnayani, R., & Susilawati, L. (2015). Uji aktivitas antagonis Trichoderma Harzianum 11035 terhadap Colletotrichum capsici TCKR2 dan Colletotrichum acutatum TCK1 penyebab antraknosa pada tanaman cabai. Prosiding Seminar Nasional XII Pendidikan Biologi FKIP UNS. Surakarta, 8 Agustus 2017, 892–897. https://jurnal.fkip.uns.ac.id/index.php/prosbio/index

Akram, S., Ahmed, A., He, P., He, P., Liu, Y., Wu, Y., Munir, S., & He, Y. (2023). Uniting the role of endophytic fungi against plant pathogens and their interaction. Journal of Fungi, 9(1). https://doi.org/10.3390/jof9010072

Chen, J., Zhou, L., Din, I. U., Arafat, Y., Li, Q., Wang, J., Wu, T., Wu, L., Wu, H., Qin, X., Pokhrel, G. R., Lin, S., & Lin, W. (2021). Antagonistic activity of Trichoderma spp. against Fusarium oxysporum in rhizosphere of radix pseudostellariae triggers the expression of host defense genes and improves its growth under long-term monoculture system. Frontiers in Microbiology, 12, 1–12. https://doi.org/10.3389/fmicb.2021.579920

Chen, S. C., Ren, J. J., Zhao, H. J., Wang, X. L., Wang, T. H., Jin, S. Da, Wang, Z. H., Li, C. yang, Liu, A. R., Lin, X. M., & Ahammed, G. J. (2019). Trichoderma harzianum improves defense against fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots. Phytopathology, 109(6), 972–982. https://doi.org/10.1094/PHYTO-09-18-0342-R

Divya, K. S., Murthy, S. M., & Jogaiah, S. (2021). Ecological studies of fungal biodiversity in freshwater and their broad-spectrum applications, in S. Jogaiah (ed.), Biocontrol Agents and Secondary Metabolites (pp. 631–648). Elsevier. https://doi.org/10.1016/B978-0-12-822919-4.00027-2

Droby, S., Gonzalez-Estrada, R.R., Avila-Quezada, G., Durán, P., Manzo-Sánchez, G., Hernandez-Montiel, L.G. (2022). Microbial antagonists from different environments used in the biocontrol of plant pathogens. In: Kumar, A. (eds) Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87289-2_9

Jogaiah, S., Abdelrahman, M., Tran, L. S. P., & Ito, S. I. (2018). Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Molecular Plant Pathology, 19(4), 870–882. https://doi.org/10.1111/mpp.12571

Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., & Barka, E. A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3). 596. https://doi.org/10.3390/microorganisms10030596

Lakhdari, W., Dehliz, A., Mlik, R., Hammi, H., Benlamoudi, W., Acheuk, F., & Doumandji-Mitiche, B. (2018). Inhibitory effect of Trichoderma harzianum on mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici and Alternaria solani. Organic Agriculture, 8(3), 225–230. https://doi.org/10.1007/s13165-017-0186-6

Martin-Sanchez, P. M., Nunez, M., Estensmo, E. L. F., Skrede, I., & Kauserud, H. (2022). Comparison of methods to identify and monitor mold damages in buildings. Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12189372

Mazaro, S. M., Meyer, M. C., Dias-Arieira, C. R., dos Reis, E. F., & Bettiol, W. (2022). Antagonistic fungi against plant pathogens for sustainable. In V. R. Rajpal, I. Singh, & S. S. Navi (Eds.), Fungal diversity, ecology and control management (pp. 607–637). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8877-5_29

Meddad-Hamza, A., Benzina, F., Meddad, C., Hamza, N., Reghmit, A., Ziane, H., & Ksentini, H. (2023). Biological control of arbuscular mycorrhizal fungi and Trichoderma harzianum against Fusarium oxysporum and Verticillium dahliae induced wilt in tomato plants. Egyptian Journal of Biological Pest Control, 33(1). https://doi.org/10.1186/s41938-023-00737-5

Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311–324. https://doi.org/10.1111/j.1364-3703.2009.00538.x

Nurfalinda, S., Sirwati, F., Advinda, L. (2023). Isolasi jamur Capnodium sp. penyebab penyakit embun jelaga pada tanaman jambu air (Syzygium aqueum). Bio Sains Jurnal Ilmiah Biologi, 2(2), 62–66. https://doi.org/10.6084/m9.figshare.23564679

Pandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra, V., & Kaur, J. (2022). Major biological control strategies for plant pathogens. Pathogens, 11(2), 1–21. https://doi.org/10.3390/pathogens11020273

Patra, J. K., & Baek, K.-H. (2014). Green nanobiotechnology: Factors Affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014, 1–12. https://doi.org/10.1155/2014/417305

Rahmawati, D., Yanuarsih, N., & Hastuti, U. S. (2018). Kajian daya antagonisme kapang Trichoderma spp. terhadap Colletotrichum capsicidan dan Erysiphe cichoracearum secara in vitro. Proceeding Biology Education Conference, 15(1), 848–852. https://jurnal.uns.ac.id/prosbi/article/view/40049

Rai, P. K. (2016). Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicology and Environmental Safety, 129, 120–136. https://doi.org/https://doi.org/10.1016/j.ecoenv.2016.03.012

Saldaña-Mendoza, S. A., Pacios-Michelena, S., Palacios-Ponce, A. S., Chávez-González, M. L., & Aguilar, C. N. (2023). Trichoderma as a biological control agent: mechanisms of action, benefits for crops and development of formulations. World Journal of Microbiology and Biotechnology, 39(10), 269. https://doi.org/10.1007/s11274-023-03695-0

Sharma, I.P., Sharma, A.K. (2020). Trichoderma–Fusarium interactions: A Biocontrol strategy to manage wilt. In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_9

Singh, I., Giri, B. (2017). Arbuscular Mycorrhiza Mediated Control of Plant Pathogens. In: Varma, A., Prasad, R., Tuteja, N. (eds), Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_7

Tariq, M., Khan, A., Asif, M., Khan, F., Ansari, T., Shariq, M., & Siddiqui, M. A. (2020). Biological control: A sustainable and practical approach for plant disease management. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 507–524. https://doi.org/10.1080/09064710.2020.1784262

Thambugala, K. M., Daranagama, D. A., Phillips, A. J. L., Kannangara, S. D., & Promputtha, I. (2020). Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology, 10, 1–19. https://doi.org/10.3389/fcimb.2020.604923

Ty?kiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-?cise?, J. (2022). Trichoderma : estado actual de su aplicación en la agricultura para el biocontrol de hongos fitopatógenos y la estimulación del crecimiento vegetal. Revista Internacional de Ciencias Moleculares, 23(4), 2329. https://doi.org/10.3390/ijms23042329

Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology, 14, 1160551. https://doi.org/10.3389/fmicb.2023.1160551

Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168–178. https://doi.org/10.1016/j.aoas.2020.09.003

Downloads

Published

2024-06-07