The variation of the Solanaceae family trichomes found in the Cendana Hill, Sedan District, Rembang Regency

Authors

  • Moh Ilham Yusuf Program Studi Pendidikan Biologi, Universitas PGRI Ronggolawe Tuban
  • Ali Mustofa Program Studi Pendidikan Biologi, Universitas PGRI Ronggolawe Tuban
  • Imas Cintamulya Program Studi Pendidikan Biologi, Universitas PGRI Ronggolawe Tuban

DOI:

https://doi.org/10.30862/inornatus.v5i2.840

Keywords:

Glandular trichomes, non-glandular trichomes, Solanaceae, trichome variation

Abstract

This study aimed to identify the variation of trichomes in the Solanaceae family found in the Cendana Hill of Sedan District, Rembang Regency. This study used the trichome printing method and the results were observed under a microscope. This study found trichomes glandular and non-glandular from the six Solanaceae species with various types. Different variations were found from the six species of the Solanaceae family, i.e: stellata, acicular, uncinate, hydathode, simplex and curved. The variations of trichomes from the Solanaceae family have different characteristics and shapes. This study identified six species from the Solanaceae family that have variations in the shape and type of trichomes on the epidermal layer of leaves, i.e: Solanum melongena var. melongena, var. serpentinum, Solanum lycopersicum, Solanum nigrum, Physalis angulata, Nicotiana tabacum, and Capsicum frutescens. Non-glandular trichomes act as a mechanical defense against pathogens and herbivores, while glandular trichomes have the function of secreting secondary metabolites, such as alkaloids and flavonoids, which play a role in chemical defense.

References

Agustin, Y. T., Ermayanti, E., & Susanti, R. (2022). Leaf trichomes identification in lamiaceae family plants and contribution to high school biology learning. JPBIO (Jurnal Pendidikan Biologi), 7(1), 20-35. https://doi.org/10.31932/jpbio.v7i1.1310

Anggraeni, W., Nuralisa, Y., & Supriyatna, A. (2023). Inventory of Solanaceae Family Plants in Goalpara Sukabumi. IJESPG (International Journal of Engineering, Economic, Social Politic and Government), 1(1), 57-62. https://ijespgjournal.org/index.php/ijespg/article/view/26

Appidi, J. R., Grierson, D. S., & Afolayan, A. J. (2008). Foliar micromorphology of Hermannia icana Cav. Pakistan Journal of Biological Sciences, 11(16), 2023–2027. https://doi.org/10.3923/pjbs.2008.2023.2027

Astuti, S. P. (2021). Pemanfaatan canva design sebagai media pembelajaran mata kuliah fisika listrik statis. Navigation Physics : Journal of Physics Education, 3(1), 8–15. https://doi.org/10.30998/npjpe.v3i1.563

Ayub, N. A., Karim, H., & Syamsiah, S. (2021). Jenis-jenis Trikoma pada Tumbuhan Solanaceae, Malvaceae dan Asteraceae sebagai Sumber Bahan Praktikum pada Materi Anatomi Tumbuhan. Biology Teaching and Learning, 4(2), 102–112. https://doi.org/10.35580/btl.v4i2.25885

Bhatt, A., Naidoo, Y., & Nicholas, A. (2010). An investigation of the glandular and non-glandular foliar trichomes of Orthosiphon labiatus N.E.Br. [Lamiaceae]. New Zealand Journal of Botany, 48(3–4), 153–161. https://doi.org/10.1080/0028825X.2010.500716

Cahyono, E., Hindun, I., Rahardjanto, A., & Nurrohman, E. (2022). Exploration Characteristics of Trichomes Shading Plant at Melati Bungur Park Malang City. Jurnal Pembelajaran Dan Biologi Nukleus, 8(2), 459–469. https://doi.org/10.36987/jpbn.v8i2.2910

Camoirano, A., Arce, A. L., Ariel, F. D., Alem, A. L., Gonzalez, D. H., & Viola, I. L. (2020). Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. Journal of Experimental Botany, 71(18), 5438–5453. https://doi.org/10.1093/jxb/eraa257

Chang, A., Hu, Z., Chen, B., Vanderschuren, H., Chen, M., Qu, Y., Yu, W., Li, Y., Sun, H., Cao, J., Vasudevan, K., Li, C., Cao, Y., Zhang, J., Shen, Y., Yang, A., & Wang, Y. (2022). Characterization of trichome-specific BAHD acyltransferases involved in acylsugar biosynthesis in Nicotiana tabacum. Journal of Experimental Botany, 73(12), 3913–3928. https://doi.org/10.1093/jxb/erac095

Chang, J., Xu, Z., Li, M., Yang, M., Qin, H., Yang, J., & Wu, S. (2019). Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato. PLoS Genetics, 15(10), 1–24. https://doi.org/10.1371/journal.pgen.1008438

Cold, R., Liu, J., Han, J., & Wang, A. (2020). The Roles of Di ff erent Types of Trichomes in Tomato. Agronomy, 10(3), 411. https://doi.org/10.3390/agronomy10030411

Dhankhar, R., Regmi, K., Kawatra, A., & Gulati, P. (2023). Trichomics: trichomes as natural chemical factories. Springer Nature Singapore.

El-Sappah, A. H., Elrys, A. S., Desoky, E. S. M., Zhao, X., Bingwen, W., El-Sappah, H. H., Zhu, Y., Zhou, W., Zhao, X., & Li, J. (2021). Comprehensive genome wide identification and expression analysis of MTP gene family in tomato (Solanum lycopersicum) under multiple heavy metal stress. Saudi Journal of Biological Sciences, 28(12), 6946–6956. https://doi.org/10.1016/j.sjbs.2021.07.073

Esmaeili, G., Azizi, M., Arouiee, H., & Vaezi, J. (2019). Anatomical and Morphological Properties of Trichomes in Four Iranian Native Salvia Species under Cultivated Conditions. International Journal of Horticultural Science and Technology, 6(2), 189–200. https://doi.org/10.22059/ijhst.2019.281162.296

Feng, Z., Bartholomew, E. S., Liu, Z., Cui, Y., Dong, Y., Li, S., Wu, H., Ren, H., & Liu, X. (2021). Glandular trichomes: new focus on horticultural crops. Horticulture Research, 8(1), 1–11. https://doi.org/10.1038/s41438-021-00592-1

Gonzalez, A. M., & Arbo, M. M. (2004). Trichome complement of Turnera and Piriqueta (Turneraceae). Botanical Journal of the Linnean Society, 144(1), 85–97. https://doi.org/10.1111/j.0024-4074.2004.00229.x

Hall, D., Ammar, E.-D., Bowman, K., & Stover, E. (2018). Epifluorescence and stereomicroscopy of trichomes associated with resistant and susceptible host plant genotypes of the asian citrus psyllid (Hemiptera: Liviidae), Vector of citrus greening disease bacterium. Journal of Microscopy and Ultrastructure, 6(1), 56-63. https://doi.org/10.4103/jmau.jmau_9_18

Han, J., Xia, T., Liu, Y., & Gan, Y. (2023). Research progress on gene regulation of plant trichome development. Zhiwu Shengli Xuebao/Plant Physiology Journal, 59(8), 1517–1523. https://doi.org/10.13592/j.cnki.ppj.300153

Hauser, M.-T. (2014). Molecular basis of natural variation and environmental control of trichome patterning. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00320

He, Q., Bethers, B., Tran, B., & Yang, Y. (2022). 3D Printing of Salvinia Water Fern-Inspired Superhydrophobic Structures. Proceedings of ASME 2022 17th International Manufacturing Science and Engineering Conference, MSEC 2022, 1. https://doi.org/10.1115/MSEC2022-85646

Hidayat, A, N., Mustofa, A., & Cintamulya, I.. (2024). Stomatal Density and Damage on Mango Leaves (Mangifera indica) in the PT Semen Gresik Factory Tuban Area, Kerek District, Tuban Regency. Jurnal Biologi Universitas Andalas, 12(2), 73–78. https://doi.org/10.25077/jbioua.12.2.73-78.2024

Hu, G.-X., Balangcod, T. D., & Xiang, C.-L. (2012). Trichome micromorphology of the Chinese-Himalayan genus Colquhounia (Lamiaceae), with emphasis on taxonomic implications. Biologia, 67(5), 867–874. https://doi.org/10.2478/s11756-012-0076-z

Hua, B., Chang, J., Wu, M., Xu, Z., Zhang, F., Yang, M., Xu, H., Wang, L. J., Chen, X. Y., & Wu, S. (2021). Mediation of JA signalling in glandular trichomes by the woolly/SlMYC1 regulatory module improves pest resistance in tomato. Plant Biotechnology Journal, 19(2), 375–393. https://doi.org/10.1111/pbi.13473

Huebbers, J. W., Büttgen, K., & Panstruga, R. (2022). Efficient Isolation and Purification of High-Quality Arabidopsis thaliana Trichomes. Current Protocols, 2(9). E541. https://doi.org/10.1002/cpz1.541

Kamala Jayanthi, P. D., Ravindra, M. A., Kempraj, V., Roy, T. K., Shivashankara, K. S., & Singh, T. H. (2018). Morphological diversity of trichomes and phytochemicals in wild and cultivated eggplant species. Indian Journal of Horticulture, 75(2), 265–272. https://doi.org/10.5958/0974-0112.2018.00045.2

Kariyat, R. R., Raya, C. E., Chavana, J., Cantu, J., Guzman, G., & Sasidharan, L. (2019). Feeding on glandular and non-glandular leaf trichomes negatively affect growth and development in tobacco hornworm (Manduca sexta) caterpillars. Arthropod-Plant Interactions, 13(2), 321–333. https://doi.org/10.1007/s11829-019-09678-z

Kaur, J., & Kariyat, R. (2020). Role of Trichomes in Plant Stress Biology. Springer International Publishing. https://doi.org/10.1007/978-3-030-46012-9_2

Konrad, W., Roth-Nebelsick, A., Kessel, B., Miranda, T., Ebner, M., Schott, R., & Nebelsick, J. H. (2021). The impact of raindrops on Salvinia molesta leaves: effects of trichomes and elasticity. Journal of the Royal Society Interface, 18(185), 1-14. https://doi.org/10.1098/rsif.2021.0676

Li, C., Mo, Y., Wang, N., Xing, L., Qu, Y., Chen, Y., Yuan, Z., Ali, A., Qi, J., Fernández, V., Wang, Y., & Kopittke, P. M. (2023). The overlooked functions of trichomes: Water absorption and metal detoxication. Plant Cell and Environment, 46(3), 669–687. https://doi.org/10.1111/pce.14530

Li, C., Wu, J., Blamey, F. P. C., Wang, L., Zhou, L., Paterson, D. J., Van Der Ent, A., Fernández, V., Lombi, E., Wang, Y., & Kopittke, P. M. (2021). Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. Journal of Experimental Botany, 72(13), 5079–5092. https://doi.org/10.1093/jxb/erab180

Liu, H., Liu, S., Jiao, J., Lu, T. J., & Xu, F. (2017). Trichomes as a natural biophysical barrier for plants and their bioinspired applications. Soft Matter, 13(30), 5096–5106. https://doi.org/10.1039/c7sm00622e

Livingston, S. J., Quilichini, T. D., Booth, J. K., Wong, D. C. J., Rensing, K. H., Laflamme-Yonkman, J., Castellarin, S. D., Bohlmann, J., Page, J. E., & Samuels, A. L. (2020). Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. Plant Journal, 101(1), 37–56. https://doi.org/10.1111/tpj.14516

Ma, Z.-Y., Wen, J., Ickert-Bond, S. M., Chen, L.-Q., & Liu, X.-Q. (2016). Morphology, structure, and ontogeny of Trichomes of the grape genus (Vitis, vitaceae). Frontiers in Plant Science, 7 (704), 1-14. https://doi.org/10.3389/fpls.2016.00704

Malik, C. P., & Sanadhya, D. (2018). Advances in Plant Science Research. In the Journal of Plant Science Research 34 (1). https://doi.org/10.32381/jpsr.2018.34.01.9

Matsumura, M., Nomoto, M., Itaya, T., Aratani, Y., Iwamoto, M., Matsuura, T., Hayashi, Y., Mori, T., Skelly, M. J., Yamamoto, Y. Y., Kinoshita, T., Mori, I. C., Suzuki, T., Betsuyaku, S., Spoel, S. H., Toyota, M., & Tada, Y. (2022). Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana. Nature Communications, 13(1), 1–15. https://doi.org/10.1038/s41467-022-28813-8

Muliyah, E., & Ratna Djuita, N. (2022). Struktur Sekretori pada Physalis angulata sebagai Tumbuhan Obat. Bio Sains: Jurnal Ilmiah Biologi, 1(2), 19–24. https://doi.org/10.34005/bio-sains.v1i2.1797

Muravnik, L. E. (2020). The Structural Peculiarities of the Leaf Glandular Trichomes: A Review. Reference Series in Phytochemistry, 1–35. https://doi.org/10.1007/978-3-030-11253-0_3-1

Mustofa, A., Hastuti, U. S., & Susanto, H. (2025). Endophytic fungi isolated from Heliotropium indicum and their antagonism activity toward Fusarium solani and F. oxysporum. Biodiversitas, 26(2), 617–627. https://doi.org/10.13057/biodiv/d260209

Mustofa, A., Zubaidah, S., & Kuswantoro, H. (2021). Correlation and path analysis on yield and yield components in segregating populations. AIP Conference Proceedings, 2353. https://doi.org/10.1063/5.0052842

Naidoo, Y., Karim, T., Heneidak, S., Sadashiva, C. T., & Naidoo, G. (2012). Glandular trichomes of Ceratotheca triloba (Pedaliaceae): Morphology, histochemistry and ultrastructure. Planta, 236(4), 1215–1226. https://doi.org/10.1007/s00425-012-1671-5

Nanda Kurnia Ilahi, R., Novaliza Isda, M., & Rosmaina. (2018). Morfologi permukaan daun tanaman terung (Solanum melongena L.) sebagai respons terhadap cekaman kekeringan morphological performance of eggplant (Solanum melongena L.) leaf surface as response to water stress. Journal of Biology, 11(1), 41–48.

Nurtjahyani, S. D., Oktafitria, D., Sriwulan, Arifin, A. Z., Purnomo, E., Santoso, A., & Mustofa, A. (2021). Study of the Use of Block Compos on the Growth of Teak (Tectona grandis) in Used Lands of Kapur Stone Mine. IOP Conference Series: Earth and Environmental Science, 755(1), 1–7. https://doi.org/10.1088/1755-1315/755/1/012090

Parmar, G., & Zaman, W. (2022). Trichomes’ Micromorphology and Their Evolution in Selected Species of Causonis (Vitaceae). Horticulturae, 8(10), 1-12. https://doi.org/10.3390/horticulturae8100877

Romero, P., Gabrielli, A., Sampedro, R., Perea-García, A., Puig, S., & Lafuente, M. T. (2021). Identification and molecular characterization of the high-affinity copper transporters family in Solanum lycopersicum. International Journal of Biological Macromolecules, 192, 600–610. https://doi.org/10.1016/j.ijbiomac.2021.10.032

Sanjayanti, A., Ahmad, D. N., Adawiyah, K., Putri, N. L., Vista, B., & Putri, R. (2024). Analysis of Stem Anatomical Structure in Tomato ( Solanum lycopersicum ). Journal of Biological Science and Education ~ JBSE ~ 6(1), 4–9. https://doi.org/10.31327/jbse.v6i1.2203

Saputri, D., & Putri, N. A. (2023a). Studi anatomi trikoma daun pada famili cucurbitaceae. Prosiding Seminar Nasional Inovasi Sains Dan Pembelajarannya: Tantangan Dan Peluang, 23, 629–636. https://doi.org/10.51826/edumedia.v3i2.367

Saputri, D., & Putri, N. A. (2023b). Studi Anatomi Trikoma Daun pada Famili Cucurbitaceae Anatomy Study of Leaf Trichomes in the Cucurbitaceae Family. 01(01), 629–636.

Schuurink, R., & Tissier, A. (2020). Glandular trichomes: micro-organs with model status? New Phytologist, 225(6), 2251–2266. https://doi.org/10.1111/nph.16283

Shobari, M. I., Makarim, M. N., & Supriyatna, A. (2023). Identifikasi Tanaman Famili Solanaceae di Desa Cibiru Wetan. IJESPG (International Journal of Engineering, Economic, Social Politic and Government), 1(1), 52-56.

Suvindran, N., Li, F., Pan, Y., & Zhao, X. (2018). Characterization and Bioreplication of Tradescantia pallida Inspired Biomimetic Superwettability for Dual Way Patterned Water Harvesting. Advanced Materials Interfaces, 5(19), 1800723. https://doi.org/10.1002/admi.201800723

Swandari, T. (2018). Karakterisasi Trikoma dan Kandungan Gula Total Tembakau Rajangan Temanggung. AGROISTA Jurnal Agroteknologi, 02(01), 52–59. https://doi.org/10.55180/agi.v2i1.27

Tanney, C. A. S., Backer, R., Geitmann, A., & Smith, D. L. (2021). Cannabis Glandular Trichomes: A Cellular Metabolite Factory. Frontiers in Plant Science, 12(September). https://doi.org/10.3389/fpls.2021.721986

Teixeira, F., Silva, A. M., Delerue-Matos, C., & Rodrigues, F. (2023). Lycium barbarum Berries (Solanaceae) as Source of Bioactive Compounds for Healthy Purposes: A Review. International Journal of Molecular Sciences, 24(5), 4777. https://doi.org/10.3390/ijms24054777

Uzelac, B., Stojičić, D., & Budimir, S. (2019). Glandular trichomes on the leaves of nicotiana tabacum: Morphology, developmental ultrastructure, and secondary metabolites. Plant cell and tissue differentiation and secondary metabolites: fundamentals and applications, 25-61. https://doi.org/10.1007/978-3-030-11253-0_1-1

Wang, C., Zhao, B., He, L., Zhou, S., Liu, Y., Zhao, W., Guo, S., Wang, R., Bai, Q., Li, Y., Wang, D., Wu, Q., Yang, Y., Liu, Y., Tadege, M., & Chen, J. (2021). The WOX family transcriptional regulator SlLAM1 controls compound leaf and floral organ development in Solanum lycopersicum. Journal of Experimental Botany, 72(5), 1822–1835. https://doi.org/10.1093/jxb/eraa574

Wang, X., Shen, C., Meng, P., Tan, G., & Lv, L. (2021). Analysis and review of trichomes in plants. BMC Plant Biology, 21(1), 1–11. https://doi.org/10.1186/s12870-021-02840-x

Wang, Y. fan, Liao, Y. qiu, Wang, Y. peng, Yang, J. wei, Zhang, N., & Si, H. jun. (2020). Genome-wide identification and expression analysis of StPP2C gene family in response to multiple stresses in potato (Solanum tuberosum L.). Journal of Integrative Agriculture, 19(6), 1609–1624. https://doi.org/10.1016/S2095-3119(20)63181-1

Wu, D., He, G., Tian, W., Saleem, M., Li, D., Huang, Y., Meng, L., He, Y., Liu, Y., & He, T. (2021). OPT gene family analysis of potato (Solanum tuberosum) responding to heavy metal stress: Comparative omics and co-expression networks revealed the underlying core templates and specific response patterns. International Journal of Biological Macromolecules, 188, 892–903. https://doi.org/10.1016/j.ijbiomac.2021.07.183

Zheng, F., Cui, L., Li, C., Xie, Q., Ai, G., Wang, J., Yu, H., Wang, T., Zhang, J., Ye, Z., & Yang, C. (2022). Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato. Journal of Experimental Botany, 73(1), 228–244. https://doi.org/10.1093/jxb/erab417

Downloads

Published

2025-05-11

Similar Articles

You may also start an advanced similarity search for this article.