Fast Forward Method on Single Spin with Rabi Frequency

Authors

  • Rinarti Raja Gukguk Universitas Bengkulu
  • Iwan Setiawan Universitas Bengkulu
  • Andik Purwanto Universitas Bengkulu

DOI:

https://doi.org/10.37891/kpej.v7i2.756

Abstract

This research examines the application of the fast forward method to single spin with Rabi frequency. In this study, the electron spin dynamics are examined by accelerating adiabatic quantum dynamics. Through the concept of adiabatic will be obtained unchanged state of the system, at the beginning and end of the evolution of the system. This study aims to obtain an additional Hamiltonian on the concept of accelerated adiabatic quantum dynamics on single spin. The method used is the fast forward method developed by Masuda and Nakamura. The result of this research is to obtain the additional Hamiltonian “equation 54” and the driving magnetic field through the fast forward method “equation 56”. The fast forward method is applied by first obtaining the eigenvalues of the Hamiltonian system. Furthermore, by reviewing the lowest energy state (ground state). It is concluded that this study obtained an additional Hamiltonian term with a driving magnetic field that ensures that a single spin can move from the initial state to the final state in a short time, while maintaining the characteristics of each energy level in the system.

References

Aszhar, J., Setiawan, I., & Medriati, R. (2024). Method for Accelerating Equilibrium in Perfectly Damped Brownian Motion with Harmonic Potential. Kasuari: Physics Education Journal (KPEJ) Universitas Papua, 7(1), 31–43. https://doi.org/https://doi.org/10.37891/kpej.v7i1.485

Benggadinda, A., & Setiawan, I. (2021). Metoda Fast Forward Untuk Mempercepat Dinamika Kuantum Adiabatik Pada Spin Tunggal. JST (Jurnal Sains Dan Teknologi), 10(2), 274–280. https://doi.org/10.23887/jstundiksha.v10i2.39876

Berry, M. V. (2009). Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36), 1–14. https://doi.org/10.1088/1751-8113/42/36/365303

Chen, X., & Muga, J. G. (2010). Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Physical Review A - Atomic, Molecular, and Optical Physics, 82(5), 1–7. https://doi.org/10.1103/PhysRevA.82.053403

Duan, L. (2022). Unified approach to the nonlinear Rabi models. New Journal of Physics, 24(8), 1–11. https://doi.org/10.1088/1367-2630/ac8a68

Griffiths, D. (1961). Introduction to Quantum Mechanics. New Jersey: Prentice Hall. https://doi.org/10.1063/1.3057610

Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., & Muga, J. G. (2019). Shortcuts to adiabaticity: Concepts, methods, and applications. Reviews of Modern Physics, 91(4), 1–10. https://doi.org/10.1103/RevModPhys.91.045001

Jarzynski, C. (2013). Generating shortcuts to adiabaticity in quantum and classical dynamics. Physical Review A - Atomic, Molecular, and Optical Physics, 88(4), 1–5. https://doi.org/10.1103/PhysRevA.88.040101

Khujakulov, A., & Nakamura, K. (2016). Scheme for accelerating quantum tunneling dynamics. Physical Review A, 93(2), 1–11. https://doi.org/10.1103/PhysRevA.93.022101

Layton, K. J., Tahayori, B., Mareels, I. M. Y., Farrell, P. M., & Johnston, L. A. (2014). Rabi resonance in spin systems: Theory and experiment. Journal of Magnetic Resonance, 242, 136–142. https://doi.org/10.1016/j.jmr.2014.02.014

Manoukian, E. B. (2007). Quantum Physics of Spin 1/2 and Two-Level Systems; Quantum Predictions Using Such Systems. In Quantum Theory. https://doi.org/10.1007/978-1-4020-4190-7_8

Masuda, S., & Nakamura, K. (2022). Fast-forward scaling theory Subject Areas : The Royal Society Publishing, 20210278(380), 1–15. https://doi.org/https://royalsocietypublishing.org

Nakamura, K., Khujakulov, A., Avazbaev, S., & Masuda, S. (2017). Fast forward of adiabatic control of tunneling states. Physical Review, 062108(95), 1–12. https://doi.org/10.1103/PhysRevA.95.062108

Panudju, A. T., Bhayangkara, Purba, F., Mangkurat, Nurbaiti, S. Y., & Raya. (2024). Metodologi penelitian. Padang: CV.Gita Lentera.

Petiziol, F., Dive, B., Mintert, F., & Wimberger, S. (2018). Fast adiabatic evolution by oscillating initial Hamiltonians. Physical Review A, 98(4), 1–14. https://doi.org/10.1103/PhysRevA.98.043436

Setiawan, I. (2019). Dinamika Spin Kuantum Adiabatik Dipercepat Pada Model Landau-Zener Dan Model Ising. Jurnal Kumparan Fisika, 2(1), 57–64. https://doi.org/10.33369/jkf.2.1.57-64

Setiawan, I., Eka Gunara, B., Masuda, S., & Nakamura, K. (2017). Fast forward of the adiabatic spin dynamics of entangled states. Physical Review A, 96(5), 1–13. https://doi.org/10.1103/PhysRevA.96.052106

Setiawan, I., Ekawita, R., Sugihakim, R., & Gunara, B. E. (2023). Fast-forward adiabatic quantum dynamics of XY spin model on three spin system. Physica Scripta, 98(2), 1–13. https://doi.org/10.1088/1402-4896/acb2fe

Torres, E., Froelich, T., Wang, P., DelaBarre, L., Mullen, M., Adriany, G., Pizetta, D. C., Martins, M. J., Vidoto, E. L. G., Tannús, A., & Garwood, M. (2022). B1-gradient–based MRI using frequency-modulated Rabi-encoded echoes. Magnetic Resonance in Medicine, 87(2), 674–685. https://doi.org/10.1002/mrm.29002

Xie, Q., Zhong, H., Batchelor, M. T., & Lee, C. (2017). The quantum Rabi model: Solution and dynamics. Journal of Physics A: Mathematical and Theoretical, 50(11), 1–41. https://doi.org/10.1088/1751-8121/aa5a65

Ying, Z. J., Gentile, P., Baltanás, J. P., Frustaglia, D., Ortix, C., & Cuoco, M. (2020). Geometric driving of two-level quantum systems. Physical Review Research, 2(2), 1–17. https://doi.org/10.1103/PhysRevResearch.2.023167

Downloads

Published

25-12-2024

How to Cite

Raja Gukguk, R., Setiawan, I., & Purwanto, A. (2024). Fast Forward Method on Single Spin with Rabi Frequency. Kasuari: Physics Education Journal (KPEJ), 7(2), 322–331. https://doi.org/10.37891/kpej.v7i2.756