Method for Accelerating Equilibrium in Perfectly Damped Brownian Motion with Harmonic Potential

Jodi Aszhar, Iwan Setiawan, Rosane Medriati

Abstract


Technological advances nowadays, making human beings able to do things easier and shorter. In this study, perfectly damped Brownian motion with a harmonic potential is considered, where previously it was moving randomly, requiring a long time to return to an equilibrium state. This research aims to determine the additional potential of each initial potential in the form of harmonic potentials with various powers. The method used is the Fast Forward method developed by Nakamura and Masuda. The equation used in this research is the Fokker-Planck equation. It was concluded that this research obtained additional potential for perfectly damped Brownian motion so that the time needed to reach the equilibrium state would be shorter.

Keywords


Brown motion, fast forward, and theoretical physics

Full Text:

PDF

References


Ainayah, N., Setiawan, I., & Hamdani, D. (2023). Methods to Accelerate Equilibrium in Overdamped Brownian Motion. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 8(2), 212-225.

Apriana, & Rosyid, M. F. (2018). Perumusan Gerak Stokastik Benda Tegar dalam Ruang Konfigurasi SE(3). BIMIPA, 28(1), 9–16.

Apriza, B. (2019). Model Pembelajaran Think Pair Share Berbasis Literasi di Sekolah Dasar. Prosiding Seminar Nasional Pagelaran, 1(1), 216–223. http://www.seminar.uad.ac.id/index.php/ppdn/article/view/1432

Benggadinda, A., & Setiawan, I. (2021). Metoda Fast Forward untuk Mempercepat Dinamika Kuantum Adiabatik pada Spin Tunggal. JST (Jurnal Sains dan Teknologi), 10(2), 274–280. https://doi.org/10.23887/jstundiksha.v10i2.39876

Del Campo, A., & Kim, K. (2019). Focus on Shortcuts to Adiabaticity. New Journal of Physics, 21(5). https://doi.org/10.1088/1367-2630/ab1437

Elisa, N., Setiawan, I., & Hamdani, D. (2023). Energi Penggerak untuk Mempercepat Kesetimbangan Gerak Brown Teredam Sebagian (Underdamped). Jurnal Inovasi dan Pembelajaran Fisika, 10(1), 21–33.

Frank, T. D. (2005). Delay Fokker-Planck Equations, Perturbation Theory, and Data Analysis for Nonlinear Stochastic Systems with Time Delays. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 71(3), 1–14. https://doi.org/10.1103/PhysRevE.71.031106

Hutagalung, M. (2023). Kajian Literatur Fase Adiabatik untuk mempercepat Dinamika Kuantum Adiabatik pada Osilator Harmonik. Indonesian Journal of Applied Physics, 13(1), 106–116. https://doi.org/DOI : https://doi.org/10.13057/ijap.v13i1.65252

Khadem, S. M. J., Klages, R., & Klapp, S. H. L. (2022). Stochastic Thermodynamics of Fractional Brownian Motion. Physical Review Research, 4(4), 1-14, https://doi.org/10.1103/PhysRevResearch.4.043186

Martínez, I. A., Petrosyan, A., Guéry-Odelin, D., Trizac, E., & Ciliberto, S. (2016). Engineered swift equilibration of a Brownian particle. Nature Physics, 12(9), 843–846. https://doi.org/10.1038/nphys3758

Najmudin, I. (2018). Studi Proses Gerak Brown Relativistik dengan Pendekatan Hanggi-Klimontovich. Skripsi, UIN Malang. http://etheses.uin-malang.ac.id/id/eprint/12009

Nakamura, K., Matrasulov, J., & Izumida, Y. (2020). Fast-Forward Approach to Stochastic Heat Engine. Physical Review E, 102(1), 1–12. https://doi.org/10.1103/PhysRevE.102.012129

Palupi, D. S. (2010). Persamaan Fokker Planck dan Aplikasinya dalam Astrofisika. Berkala Fisika, 13(2), A1-A6–A6. https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/2995/2679

Pradana, I. A. (2018). Analisa Mikrotremor Menggunakan Metode Random Decrement untuk Mikrozonasi Potensi Kerusakan Akibat Gempabumi di Kabupaten Pacitan. Thesis, Institut Teknologi Sepuluh Nopember.

Romadani, A., & Rosyid, M. F. (2022). Proses difusi relativistik melalui persamaan langevin dan fokker-planck. Jurnal Teknosains, 11(2), 101-111. https://doi.org/10.22146/teknosains.63229

Seifert, U. (2012). Stochastic Thermodynamics, Fluctuation Theorems and Molecular Machines. Reports on Progress in Physics, 75(12). https://doi.org/10.1088/0034-4885/75/12/126001

Setiawan, I., Gunara, B.E., Masuda, S., & Nakamura, K. (2017). Fast Forward of The Adiabatic Spin Dynamics of Entangled States. Physical Review A, 96.

Sugihakim, R., Setiawan, I., & Gunara, B. E. (2021). Fast-Forward of Local-Phased-Regularized Spinor in Massless 2+1-Dimensions Adiabatic Dirac Dynamics. Journal of Physics: Conference Series, 1951(1). https://doi.org/10.1088/1742-6596/1951/1/012068

Takahashi, K. (2014). Fast-Forward Scaling in a Finite-Dimensional Hilbert Space. Physical Review A - Atomic, Molecular, and Optical Physics, 89(4), 1–7. https://doi.org/10.1103/PhysRevA.89.042113

Tsekov, R. (2010). Brownian Motion of Molecules: the Classical Theory. Ann. Univ. Sofia, Fac. Chem. 88 (1), 57?66. http://arxiv.org/abs/1005.1490

Yang, Y. J., & Qian, H. (2020). Unified Formalism for Entropy Production and Fluctuation Relations. Physical Review E, 101(2), 1–16. https://doi.org/10.1103/PhysRevE.101.022129




DOI: https://doi.org/10.37891/kpej.v7i1.485

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Universitas Papua


Indexed by:

       Image result for scilit


Kasuari: Physics Education Journal (KPEJ)

Universitas Papua
Jalan Gunung Salju, Amban, Manokwari, Papua Barat - 98314
Email: kasuari.kpej@gmail.com / kasuari.kpej@unipa.ac.id


e-ISSN: 2615-2673 | p-ISSN: 2615-2681


This work is licensed under a Creative Commons Attribution 4.0 International License

KPEJ Statcounter