Qualitative Analysis of Students’ Misconceptions on Energy Conservation in Mechanical Systems

Authors

  • Rodika Utama Universitas Ahmad Dahlan
  • Dian Artha Kusumaningtyas Universitas Ahmad Dahlan
  • Moh. Toifur Universitas Ahmad Dahlan
  • Oki Mustava Universitas Ahmad Dahlan
  • Asnin Nur Salamah Carl von Ossietzky Universität Oldenburg

DOI:

https://doi.org/10.37891/kpej.v8i2.1045

Abstract

Energy conservation is a fundamental principle in physics, yet numerous studies report that students often hold misconceptions regarding its meaning and application. This study aims to qualitatively explore senior high school students’ misconceptions about the conservation of energy in mechanical systems. Data were collected from 36 students in grades X and XI using a four-tier diagnostic test combined with semi-structured interviews. Thematic analysis was employed to identify the types and patterns of misconceptions. Results indicate that students frequently perceive energy as a consumable entity that disappears during processes involving friction, or equate kinetic energy directly with force. Other misconceptions include the belief that energy can be permanently lost in non-conservative systems and that potential energy does not exist unless motion occurs. These findings highlight persistent gaps in conceptual understanding despite formal instruction. The study suggests that explicit teaching strategies, such as conceptual change approaches and multiple representations, are required to address these alternative conceptions.

References

Bhakti, Y. B., Astuti, I. A. D., & Prasetya, R. (2023). Four-Tier Optics Diagnostic Test (4T-ODT) to Identify Student Misconceptions. In Proceedings of the 3rd International Conference on Education and Technology (ICETECH 2022) (pp. 308–314). Atlantis Press. https://doi.org/10.2991/978-2-38476-056-5_33

Braun, V., & Clarke, V. (2021). Thematic Analysis: A Practical Guide. London: SAGE Publications.

Busyari, A., Doyan, A., Harjono, A., Sutrio, S., & Gunada, I. W. (2021). The Implementation of Multiple-Representation Approaches Based on E-Module to Reduce Misconceptions of Prospective Physics Teachers during the Covid-19 Pandemic. Jurnal Penelitian Pendidikan IPA, 7(Special Issue). https://doi.org/10.29303/jppipa.v7iSpecialIssue.970

Creswell, J. W., & Poth, C. N. (2018). Qualitative Inquiry and Research Design: Choosing among Five Approaches (4th ed.). Thousand Oaks, CA: SAGE Publications.

Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing Scientific Knowledge in the Classroom. Educational Researcher, 23(7), 5–12. https://doi.org/10.3102/0013189X023007005

Duit, R. (2014). Teaching and Learning the Physics Energy Concept. In Teaching and Learning of Energy in K – 12 Education (pp. 67–85). Springer International Publishing. https://doi.org/10.1007/978-3-319-05017-1_5

Husnaini, S. J., & Chen, S. (2019). Effects of Guided Inquiry Virtual and Physical Laboratories on Conceptual Understanding, Inquiry Performance, Scientific Inquiry Self-Efficacy, and Enjoyment. Physical Review Physics Education Research, 15(1), 010119. https://doi.org/10.1103/PhysRevPhysEducRes.15.010119

Jatmika, S., Jumadi, J., Pujianto, P., & Rahmatullah, R. (2021). Analisis Penyebab Kesalahan Pemahaman Peserta Didik pada Materi Usaha dan Energi. Indonesian Journal of Applied Science and Technology, 2(3), 97–105. Retrieved from https://journal.publication-center.com/index.php/ijast/article/view/1228

Kaltakci-Gurel, D., Eryilmaz, A., & McDermott, L. C. (2017). Development and Application of a Four-Tier Test to Assess Pre-Service Physics Teachers’ Misconceptions about Geometrical Optics. Research in Science and Technological Education, 35(2), 238–260. https://doi.org/10.1080/02635143.2017.1310094

Kurnaz, M. A., & Sağlam Arslan, A. (2014). Effectiveness of Multiple Representations for Learning Energy Concepts: Case of Turkey. Procedia – Social and Behavioral Sciences, 116, 627–632. https://doi.org/10.1016/j.sbspro.2014.01.269

Mcneill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting Students’ Construction of Scientific Explanations by Fading Scaffolds in Instructional Materials. Journal Of The Learning Sciences, 15(2), 153–191. https://doi.org/10.1207/S15327809jls1502_1

Métioui, A. (2023). Primary School Preservice Teachers’ Alternative Conceptions about Light Interaction with Matter (Reflection, Refraction, and Absorption) and Shadow Size Changes on Earth and Sun. Education Sciences, 13(5), 462. https://doi.org/10.3390/educsci13050462

Mufti, M. B., & Sunarti, T. (2024). Identifikasi Miskonsepsi Siswa Materi Usaha dan Energi Menggunakan Five Tier Diagnostic Test. Inovasi Pendidikan Fisika, 13(3), 191–200. https://ejournal.unesa.ac.id/index.php/inovasi-pendidikan-fisika/article/view/62372/48630

Negoro, R. A., & Karina, V. (2019). Development of a Four-Tier Diagnostic Test for Misconception of Oscillation and Waves. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 5(2), 69–76. https://doi.org/10.21009/1.05201

OECD. (2023). PISA 2022 Results (Volume I): The State of Learning and Equity in Education. Paris: OECD Publishing. https://doi.org/10.1787/53f23881-en

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a Scientific Conception: Toward a Theory of Conceptual Change. Science Education, 66(2), 211–227. https://doi.org/10.1002/sce.3730660207

Pratama, D. (2025). A Reduction in Undergraduate Misconceptions on AC Circuits through Interactive Simulations. Kasuari: Physics Education Journal (KPEJ), 8(1), 272–284. https://doi.org/10.37891/kpej.v8i1.947

Purnomo, B. E., Sinon, I. L., Yusuf, I., & Widyaningsih, S. W. (2017). Penerapan model kooperatif tipe nht untuk meningkatkan partisipasi dan prestasi belajar fisika. Jurnal Sainsmat, 6(1), 70-73. https://doi.org/10.35580/sainsmat6164572017

Rapi, N. K., Suastra, I. W., Widiarini, P., & Widiana, I. W. (2022). The Influence of Flipped Classroom-Based Project Assessment on Concept Understanding and Critical Thinking Skills in Physics Learning. Jurnal Pendidikan IPA Indonesia, 11(3), 351–362. https://doi.org/10.15294/jpii.v11i3.38275

Sağlam-Arslan, A., & Kurnaz, M. A. (2011). Students’ Conceptual Understanding of Energy: Do The Learning Difficulties in Energy Concept Discovered in the 1990s Persist Still? Energy Education Science and Technology Part B: Social and Educational Studies, 3(1), 109–118. Retrieved from https://www.researchgate.net/publication/297687666_Students%27_conceptual_understanding_of_energy_Do_the_learning_difficulties_in_energy_concept_discovered_in_the_1990s_persist_still

Salmadhia, F., Rusnayati, H., & Liliawati, W. (2021). Five-Tier Geometrical Optics Test Feasibility to Identify Misconception and The Causes in High School Students. Berkala Ilmiah Pendidikan Fisika, 9(2), 141–154. https://doi.org/10.20527/bipf.v9i2.8874

Soeharto, S., & Csapó, B. (2022). Exploring Indonesian Student Misconceptions in Science Concepts. Heliyon, 8(9), e10720. https://doi.org/10.1016/j.heliyon.2022.e10720

Takeuchi, M. A., Sengupta, P., Shanahan, M.-C., Adams, J. D., & Hachem, M. (2020). Transdisciplinarity in STEM Education: A Critical Review. Studies in Science Education, 56(2), 213–253. https://doi.org/10.1080/03057267.2020.1755802

Treagust, D. F. (1988). Development and Use of Diagnostic Tests to Evaluate Students’ Misconceptions in Science. International Journal of Science Education, 10(2), 159–169. https://doi.org/10.1080/0950069880100204

Downloads

Published

31-12-2025

How to Cite

Utama, R., Kusumaningtyas, D. A., Toifur, M., Mustava, O., & Salamah, A. N. (2025). Qualitative Analysis of Students’ Misconceptions on Energy Conservation in Mechanical Systems. Kasuari: Physics Education Journal (KPEJ), 8(2), 487–499. https://doi.org/10.37891/kpej.v8i2.1045