The role of augmented reality in supporting deep learning within the merdeka curriculum: A systematic literature review in chemistry education

Authors

  • Hastuti Agussalim Universitas Negeri Makassar

DOI:

https://doi.org/10.30862/accej.v8i2.1111

Keywords:

Augmented Reality, chemistry education, deep learning, merdeka curriculum

Abstract

Chemistry education frequently faces challenges due to the abstract nature of chemical concepts, limited visual media, and insufficient student engagement. In contrast, the Merdeka Curriculum highlights the importance of deep learning, emphasizing conceptual understanding, scientific reasoning, and meaningful learning experiences. Augmented Reality (AR) offers promising affordances for addressing these issues through interactive, context-rich three-dimensional representations. This study employed a PRISMA-based Systematic Literature Review (SLR) of 12 empirical articles published between 2015 and 2025 in Scopus-indexed databases, major international publishers, and accredited SINTA journals. The findings reveal a marked increase in AR research in chemistry education between 2023 and 2025, with research and development (R&D) and quasi-experimental designs predominantly conducted at the senior secondary level. Across studies, AR consistently enhances conceptual understanding, multi-level representational competence, higher-order thinking skills, and student engagement. Moreover, AR aligns strongly with the pedagogical principles of the Merdeka Curriculum, particularly project-based learning, authentic assessment, differentiated instruction, and the development of the Pancasila Student Profile. These insights position AR as a strategic innovation for advancing deep and meaningful chemistry learning. Further research is recommended to investigate the long-term effects of AR and its integration within inquiry-based and project-based instructional models.

References

Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11. https://doi.org/10.1016/j.edurev.2016.11.002

Ariska, N. N., Sholeh, M. I., & Laksono, P. J. (2023). Pengembangan e-book kimia berbasis augmented reality (AR) pada materi bentuk molekul. Orbital: Jurnal Pendidikan Kimia, 7(2), 197–207. https://doi.org/10.19109/ojpk.v7i2.20159

Câmara Olim, S., Nisi, V., & Romão, T. (2024). Augmented reality interactive experiences for multi-level chemistry understanding. International Journal of Child-Computer Interaction, 42(September). https://doi.org/10.1016/j.ijcci.2024.100681

Chang, H. Y., Binali, T., Liang, J. C., Chiou, G. L., Cheng, K. H., Lee, S. W. Y., & Tsai, C. C. (2022). Ten years of augmented reality in education: A meta-analysis of (quasi-) experimental studies to investigate the impact. Computers and Education, 191(C). https://doi.org/10.1016/j.compedu.2022.104641

Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: suggestions for future research. Journal of Science Education and Technology, 22(4), 449–462. https://doi.org/10.1007/s10956-012-9405-9

Du, J., & Dewitt, D. (2024). Technology acceptance of a wearable collaborative augmented reality system in learning chemistry among junior high school students. Journal of Pedagogical Research, 8(1), 106–119. https://doi.org/10.33902/JPR.202425282

Fadhilah, N. F., & Nasution, H. A. (2025). Development of chemistry e-modules based on augmented reality technology on hydrocarbon material. Jurnal Inovasi Pembelajaran Kimia, 7(1), 124–133. https://doi.org/10.24114/jipk.v7i1.67921

Feriyanto, F., & Anjariyah, D. (2024). Deep learning approach through meaningful, mindful, and joyful learning: A library research. Electronic Journal of Education, Social Economics and Technology, 5(2), 208–212. https://doi.org/10.33122/ejeset.v5i2.321

Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of augmented reality on students’ learning gains. Educational Research Review, 27, 244–260. https://doi.org/10.1016/j.edurev.2019.04.001

Hasanah, U., S, R. P., W, L. A., & K, D. Y. (2025). Implementation of deep learning approach in Indonesian education. International Journal of Educational Technology and Society, 2(2), 37–41. https://international.aspirasi.or.id/index.php/IJETS/article/view/358

Kemendikbud. (2024). Kajian akademik: Kurikulum merdeka. In Kemendikbud (1st ed.). Pusat Kurikulum dan Pembelajaran.

Kemendikbudristek. (2022). Panduan Implementasi Kurikulum Merdeka Pada Madrasah. In Direktorat KSKK Madrasah RI. Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi.

Khairani, R. N., & Prodjosantoso, A. K. (2023). Application of augmented reality on chemistry learning: A Systematic Review. Jurnal Penelitian Pendidikan IPA, 9(11), 1221–1228. https://doi.org/10.29303/jppipa.v9i11.4412

Lah, N. H. C., Senu, M. S. Z. M., Jumaat, N. F., Phon, D. N. E., Hashim, S., & Zulkifli, N. N. (2024). Mobile augmented reality in learning chemistry subject: an evaluation of science exploration. International Journal of Evaluation and Research in Education , 13(2), 1007–1020. https://doi.org/10.11591/ijere.v13i2.25198

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical Research Ed.), 339. https://doi.org/10.1136/bmj.b2700

Mayer, R. E. (2014). The cambridge handbook of multimedia learning. Cambridge University Press. https://books.google.co.id/books?id=r3rsAwAAQBAJ

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., Gøtzsche, P. C., … Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), 1–6. https://doi.org/10.1371/journal.pmed.1000097

Nazar, M., Zulfadli, Rahmatillah, Puspita, K., Setiawaty, S., & Sulastri. (2024). Development of augmented reality as a learning tool to improve student ability in comprehending chemical properties of the elements. Chemistry Teacher International, 6(3), 241–257. https://doi.org/10.1515/cti-2023-0070

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj, 372. https://doi.org/10.1136/bmj.n71

Piaget, J. (1973). To understand is to invent: the future of education; right to education in the modern world. In Unesco. Penguin Books. https://unesdoc.unesco.org/ark:/48223/pf0000006133

Priyanto, P., & Sumarwan, S. (2023). Development of augmented reality learning media in chemistry subject high school. International Journal of Artificial Intelligence Research, 7(2), 123. https://doi.org/10.29099/ijair.v6i2.912

Radu, I. (2014). Augmented reality in education: A meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533–1543. https://doi.org/10.1007/s00779-013-0747-y

Ripsam, M., & Nerdel, C. (2024). Augmented reality for chemistry education to promote the use of chemical terminology in teacher training. Frontiers in Psychology, 15(July), 1–23. https://doi.org/10.3389/fpsyg.2024.1392529

Setiawaty, S., Lukman, I. R., Imanda, R., Sudirman, S., & Rauzatuzzikrina, R. (2024). Integrating mobile augmented reality applications through inquiry learning to improve students’ science process skills and concept mastery. Jurnal Pendidikan IPA Indonesia, 13(1), 90–102. https://doi.org/10.15294/jpii.v13i1.48891

Talib, C. A., Romainor, N., & Aliyu, F. (2022). Augmented reality in chemistry education: A literature review of advantages on learners. Journal of Natural Science and Integration, 5(1), 126. https://doi.org/10.24014/jnsi.v5i1.16805

Tania, A. P., & Sukarmin, S. (2025). Augmented reality-based virtual laboratory application as chemistry learning media for acid-base titration material. Jurnal Eduscience, 12(5), 1354–1366. https://doi.org/10.36987/jes.v12i5.7641

Vygotsky, L. . (1980). Mind in society: Development of higher psychological processes. In Science & Society: A Journal of Marxist Thought and Analysis (Vol. 44, Issue 1). Harvard University Press. https://doi.org/10.1177/003682378004400121

Wulandari, R., Mariska, R., Hairunisa, P., Yobee, A., Supriyadi, S., & Hermawan, J. S. (2025). Studi literatur: Analisis pembelajaran berbasis teknologi augmented reality (AR). JGK (Jurnal Guru Kita), 9(2), 555–570. https://doi.org/10.24114/jgk.v9i2.65335

Yamtinah, S., Elfi Susanti, V. H., Saputro, S., Ariani, S. R. D., Shidiq, A. S., Sari, D. R., & Ilyasa, D. G. (2023). Augmented reality learning media based on tetrahedral chemical representation: How effective in learning process? Eurasia Journal of Mathematics, Science and Technology Education, 19(8). https://doi.org/10.29333/ejmste/13436

Zalukhu, F. A. C., & Panggabean, F. T. M. (2025). Development of augmented reality-based mobile learning media on molecular shapes for high school students fandel. Jurnal Inovasi Pembelajaran Kimia, 7(2), 276–281. https://doi.org/https://jurnal.unimed.ac.id/2012/index.php/jipk/issue/view/3517

Downloads

Published

2025-12-04

How to Cite

Agussalim, H. (2025). The role of augmented reality in supporting deep learning within the merdeka curriculum: A systematic literature review in chemistry education. Arfak Chem: Chemistry Education Journal, 8(2), 772–785. https://doi.org/10.30862/accej.v8i2.1111

Issue

Section

Articles