Exploring the impact of artificial intelligence in chemistry teaching: A systematic review of empirical research

Authors

  • Nur Indah Sari Universitas Negeri Makassar
  • Fandi Ahmad Universitas Negeri Makassar

DOI:

https://doi.org/10.30862/accej.v8i2.1083

Keywords:

Artificial intelligence, chemistry teaching, empirical research, literature review

Abstract

Chemistry education frequently struggles to foster a comprehensive understanding, often because it focuses too narrowly on macroscopic, submicroscopic, or symbolic representations. While Artificial Intelligence offers considerable potential to enhance learning, research specifically examining its impact on chemistry teaching remains scarce. This study aimed to identify, evaluate, and synthesize empirical literature on the effects of AI in chemistry teaching. This study was conducted in accordance with the PRISMA three sequential stages: 1) a comprehensive literature search in scientific databases utilizing keywords such as Artificial Intelligence, Chemistry Teaching, and Empirical Study/Research; 2) a selection process based on the inclusion and exclusion criteria; and 3) systematic data extraction. The literature review incorporated 13 empirical research articles published in Scopus- and Sinta-indexed journals. Findings consistently indicate that AI integration significantly impacts learner performance and instructional effectiveness by facilitating just-in-time, automated, and individualized feedback. Specific AI applications identified include generative tools for conceptual problem-solving, the utilization of ChatGPT/Bing Chat, gamified learning approaches, and AI assistants within remote laboratory settings. Nevertheless, this study highlights the inherent limitations of AI in addressing complex chemical content, alongside prevalent student concerns about AI accuracy, plagiarism, data privacy, and the potential for over-reliance on this technology.

References

Aldwinarta, F. H., Nurdiana, R. & Sulistina, O. (2024). Media pembelajaran berbasis ai chatbot pada materi termokimia di SMA apakah dibutuhkan? Jurnal Inovasi Pendidikan Kimia, 18(1), 1–6. https://doi.org/10.15294/jipk.v18i1.49044

Almasri, F. (2024). Exploring the impact of artificial intelligence in teaching and learning of science: A systematic review of empirical research. Research in Science Education, 54(5), 977–997. https://doi.org/10.1007/s11165-024-10176-3

Balaquiao, E. C. (2024). Optimizing students’ performance through artificial intelligence (ai) technology: A gamified approach to smart learning environment. Journal of Pedagogy and Education Science, 3(02), 104–114. https://doi.org/10.56741/jpes.v3i02.515

Basimin, M. Q., Habiddin, H. & Joharmawan, R. (2023). Higher order thinking skills and visual representations of chemical concepts: A literature review. Hydrogen: Jurnal Kependidikan Kimia, 11(6), 1043. https://doi.org/10.33394/hjkk.v11i6.10173

Blonder, R., Rap, S. & Mamlok-Naaman, R. (2023). Frontiers of research in chemistry education for the benefit of chemistry teachers. Chemistry Teacher International, 5(2), 107–111. https://doi.org/10.1515/cti-2023-0041

Chi, M., Zheng, C. & He, P. (2024). Assessing high school students’ chemical thinking using an essential questions-perspective framework. Chemistry Education Research and Practice, 25(4), 1143–1158. https://doi.org/10.1039/d4rp00106k

Chiu, W. K. (2021). Pedagogy of emerging technologies in chemical education during the era of digitalization and artificial intelligence: a systematic review. Education Sciences, 11(11), 709. https://doi.org/10.3390/educsci11110709

Daher, W., Diab, H. & Rayan, A. (2023). Artificial intelligence generative tools and conceptual knowledge in problem solving in chemistry. Information (Switzerland), 14(7), 409. https://doi.org/10.3390/info14070409

De la Ossa, L. A. M., Garzón, N. N., Pérez, C., Puildo, B. E. & Hoyos, J. H. (2024). Evaluation of artificial intelligence as a source of motivation in the teaching of chemistry: A study with tenth grade students at the adventist school of ibagué. Evolutionary Studies in Imaginative Culture, 2193, 2193–2208. https://doi.org/10.70082/esiculture.vi.1721

Eitemüller, C., Trauten, F., Striewe, M. & Walpuski, M. (2023). Digitalization of multistep chemistry exercises with automated formative feedback. Journal of Science Education and Technology, 32(3), 453–467. https://doi.org/10.1007/s10956-023-10043-2

Fan, Z., Yan, Z. & Wen, S. (2023). Deep learning and artificial intelligence in sustainability: A review of SDGs, renewable energy, and environmental health. Sustainability (Switzerland), 15(18), 13493. https://doi.org/10.3390/su151813493

Halimah, N., Degeng, M. D. K. & Soepriyanto, Y. (2024). Peranan tingkat penerimaan learning management system terhadap kemampuan self regulated learning. JKTP: Jurnal Kajian Teknologi Pendidikan, 7(3), 118. https://doi.org/10.17977/um038v7i32024p118

Hasmarani, S., . R. & . R. (2019). Analisis kemampuan peserta didik dalam menyelesaikan soal asam basa pada tingkat keterampilan berpikir kritis dan berpikir kreatif di kelas XI IPA SMA/MA di kec. bulukumpa. In Chemistry Education Review (CER) (Vol. 2, Issue 2). https://doi.org/10.26858/cer.v2i2.8954

Iyamuremye, A., Niyonzima, F. N., Mukiza, J., Twagilimana, I., Nyirahabimana, P., Nsengimana, T., Habiyaremye, J. D., Habimana, O. & Nsabayezu, E. (2024). Utilization of artificial intelligence and machine learning in chemistry education: a critical review. Discover Education, 3(1), 00197–5. https://doi.org/10.1007/s44217-024-00197-5

Jere, S. & Mpeta, M. (2025). Integrating generative artificial intelligence chatbots into chemistry teaching: Impact of affective factors on engagement and conceptual understanding. Eurasia Journal of Mathematics, Science and Technology Education, 21(10). https://doi.org/10.29333/ejmste/17077

Kohnke, S. & Zaugg, T. (2025). Artificial intelligence: An untapped opportunity for equity and access in STEM education. Education Sciences, 15(1). https://doi.org/10.3390/educsci15010068

Lizano-Sánchez, F., Idoyaga, I. J., Orduna, P., Rodriguez-Gil, L. & Arguedas-Matarrita, C. (2025). Students’ interactions with an artificial intelligence assistant in a remote chemistry laboratory. Frontiers in Education, 10. https://doi.org/10.3389/feduc.2025.1712743

P dos Santos, R. (2023). Enhancing chemistry learning with ChatGPT, bing chat, bard, and claude as agents-to-think-with: A comparative case study. In SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4629567

Pedersen, A. Y. & Caviglia, F. (2018). Researcher or fellow citizen? Looking for a role model in the humanities. Proceedings of International Conference of the Learning Sciences, ICLS , 2(2018-June), 945–948.

Permatasari, M. B., Rahayu, S. & Dasna, I. W. (2022). Chemistry learning using multiple representations: A systematic literature review. Journal of Science Learning, 5(2), 334–341. https://doi.org/10.17509/jsl.v5i2.42656

Qureshi, M. D. A., Ayaz, S., Amjad, F., Ramzan, M. F., Ikram, M., & Hussain, I. (2024). Innovating chemical education: Leveraging artificial intelligence and effective teaching strategies to enhance public engagement in environmental and organic chemistry. Indus Journal of Social Sciences, 2(2), 253-271. https://doi.org/10.59075/ijss.v2i2.189

Reyes, R. L. (2025). Integrating real-world problems into chemistry curricula: Enhancing relevance and student engagement. Forum for Education Studies, 3(2), 2177. https://doi.org/10.59400/fes2177

Sari, N. I. & Ahmad, F. (2024). Studi komparatif: Model pembelajaran kooperatif tipe jigsaw dan number head together dalam pembelajaran ipa pada siswa sekolah menegah pertama. Jurnal Studi Guru Dan Pembelajaran, 7(2), 850–861. https://doi.org/10.30605/jsgp.7.2.2024.4396

Talanquer, V. (2022). The complexity of reasoning about and with chemical representations. JACS Au, 2(12), 2658–2669. https://doi.org/10.1021/jacsau.2c00498

Tamim, R. M., Borokhovski, E., Bernard, R. M., Schmid, R. F., Abrami, P. C. & Pickup, D. I. (2021). A study of meta-analyses reporting quality in the large and expanding literature of educational technology. Australasian Journal of Educational Technology, 37(4), 100–115. https://doi.org/10.14742/ajet.6322

Tonyali, B., Ropohl, M. & Schwanewedel, J. (2023). What makes representations good representations for science education? A teacher-oriented summary of significant findings and a practical guideline for the transfer into teaching. Chemistry Teacher International, 5(4), 413–425. https://doi.org/10.1515/cti-2022-0019

Zawacki-Richter, O., Kerres, M., Bedenlier, S., Bond, M. & Buntins, K. (2019). Systematic reviews in educational research: Methodology, perspectives and application. Systematic Reviews in Educational Research: Methodology, Perspectives and Application, 64(3), 1–161. https://doi.org/10.1007/978-3-658-27602-7

Downloads

Published

2025-11-29

How to Cite

Sari, N. I., & Ahmad, F. (2025). Exploring the impact of artificial intelligence in chemistry teaching: A systematic review of empirical research. Arfak Chem: Chemistry Education Journal, 8(2), 759–771. https://doi.org/10.30862/accej.v8i2.1083

Issue

Section

Articles