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Abstract  

Visual images are frequently utilized to elucidate concepts in general mathematics and 

geometry; however, their application in mathematical analysis remains uncommon. This paper 

demonstrates how visual imagery can enhance the proof of certain theorems in mathematical 

analysis. It emphasizes the importance of visualization in the learning and understanding of 

mathematical concepts, particularly within mathematical analysis, where diagrams are seldom 

employed. The paper focuses on the reasoning processes used by mathematicians in proving 

selected fundamental theorems of mathematical analysis. It provides illustrative examples 

where visual images are instrumental in performing specific subtasks within proof development 

and in completing the proofs. The proofs discussed include the sum of the first n natural 

numbers, the sum rule of integration, the mean value theorem for derivatives, the mean value 

theorem for integrals, and Young’s Inequality. This paper underscores that visual images serve 

not only as persuasive tools but also as bridges between symbolic representations and real-

world understanding.  

Keywords: definite integrals, imagery, mathematical analysis, mean value theorem, 

visualisation 

Introduction 

The field of mathematics is rich with visual relationships inherent in its concepts, ideas, and 

methods, which can be intuitively represented in various ways. Recognizing the crucial role of 

visual thinking and visualization in mathematics learning, educators often integrate visual 

representations, such as images or diagrams, into the teaching of mathematical concepts. This 

approach involves understanding the importance of students' visualization processes, their 
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abilities, and the pedagogical strategies designed to enhance instruction by establishing visual 

learning environments (Gates, 2018; Giaquinto, 2011; Makina, 2010). 

In contrast to the abstract nature typically associated with the logico-deductive formal 

proofs used by mathematicians, research has shown that visualization plays a central role in the 

creative, exploratory, and proof processes that lead to new results. An illustrative example is 

the anecdote of Norbert Wiener, who resolved a complex proof with the assistance of enigmatic 

pictures, highlighting the power of visual thinking in mathematics (Guzman, 2002). Similarly, 

some scholars have successfully employed visual representations to prove various 

mathematical theorems, such as the area of a circle (Browne, 2022), the Pythagorean theorem 

(Foo et al., 1999; Santos & Quaresma, 2010), and the sum of the first n odd numbers (Relaford-

Doyle et al., 2017). Researchers like Ahmad (2021), Arcavi (2003), Giaquinto (2011), Guncaga 

et al. (2019), Guzman (2002), and Svitek et al. (2022) have emphasized the importance of 

visualization and visual reasoning in the process of learning mathematics. Visual images can 

significantly enhance the understanding of complex mathematical concepts by rendering 

abstract ideas more concrete and accessible (Coessens et al., 2021; Quinnell, 2022; Žakelj & 

Klancar, 2022). Furthermore, they serve as valuable tools or strategies for solving mathematical 

problems (Barbosa & Vale, 2021; Kaitera & Harmoinen, 2022; Parame-Decin, 2023) and 

facilitate creativity in mathematical problem-solving (Bicer et al., 2023; Kell et al., 2013; Vale 

& Barbosa, 2023). Stylianou and Silver (2004) found that expert problem solvers utilize visual 

representations "as dynamic objects to explore the problem space qualitatively, develop a better 

understanding of the problem situation, and guide their solution planning and execution of 

problem-solving activity" (p. 353). 

However, Stylianou and Silver (2004) also noted that the use of visual representations 

presents challenges for many students in mathematical problem-solving, as visual images can 

be complex collections of ideas that may not be easily accessible to all learners. This difficulty 

may stem from students' limited exposure to visual images in mathematics instruction. Such 

challenges often result in a disconnect between the formal aspects of mathematical analysis and 

the underlying meanings they are intended to convey (Eisenberg & Dreyfus, 1991). In his study 

"Adding Structure to the Transition Process to Advanced Mathematical Activity," Engelbrecht 

(2010) explored the challenges faced by undergraduate students as they transition from calculus 

to mathematical analysis. He observed that this shift can be particularly difficult, sometimes 

even traumatic, and advocated for a methodological approach that integrates visualization 

techniques with symbolic reasoning to enhance conceptual understanding and mitigate these 

difficulties. 

Although numerous studies have demonstrated the critical role of visualization in the 

teaching and learning of various mathematical concepts, the majority of this research has 

focused on general mathematics and geometry. There appears to be a scarcity of literature on 

the role of visualization in learning mathematical analysis. Mathematical analysis, typically 

taught after calculus at the undergraduate level, relies on a rigorous logical foundation grounded 

in the axioms of real numbers. It emphasizes the importance of understanding proofs and the 

reasoning behind specific steps. Grouws (1992) suggested that organizing mathematical 
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knowledge around key components such as definitions, lemmas, propositions, theorems, 

examples, and counterexamples is essential for students to effectively comprehend and prove 

mathematical statements. This structured approach facilitates understanding, logical reasoning, 

and the development of proficiency in mathematical problem-solving. 

At the undergraduate level, mathematical thinking predominantly relies on the definitions 

of mathematical terms rather than the use of visual images. Nurwahyu and Tinungki (2020) 

elucidated the relationship between concept image and concept definition, highlighting the 

importance of visualization in forming mental representations of complex mathematical 

concepts. Visual elements contribute significantly to intuitive reasoning, which can be 

categorized into diagrammatic reasoning, analogical reasoning, and the use of prototypes 

(Gates, 2018; Presmeg, 2020). 

There is a prevailing belief that visualization in mathematical analysis is heuristic rather 

than a means of discovery or proof. Barwise and Etchemendy (2019) noted that “despite the 

obvious importance of visual images in human cognitive activities, visual representation 

remains a second-class citizen in both the theory and practice of mathematics. In particular, we 

are all taught to look askance at proofs that make crucial use of diagrams, graphs, or other non-

linguistic forms of representation” (p. 160). This paper argues that certain theorems may be 

better understood when accompanied by diagrams. As Barker-Plummer and Bailin (1997) 

succinctly stated, "visualization distinguishes following a proof from seeing it to be true" (p. 

26). We present five examples where visual images can be instrumental in facilitating the proofs 

of mathematical analysis theorems. Demeke (2016) contended that while multiple proofs may 

exist for a given mathematical theorem, the choice of a particular proof should be based on its 

value in a given context. The author emphasized that “mathematicians may value a proof for 

reasons such as comprehensibility, explanatory power, and originality” (p. 11). Visual images 

can help to clarify proofs and enhance their comprehension. 

In the following sections, we discuss the role of imagery in mathematics and visual 

thinking in learning mathematical analysis concepts. It was followed by an overview of the 

conceptual research method and a discussion on how visual representations can be employed 

to enhance the understanding of five fundamental mathematical analysis concepts.  

Imagery in Mathematics 

Imagery is a cognitive process that involves the mental representation of entities not currently 

perceived by the senses (Goldstein, 2011; Sternberg, 2009). This process includes the creation 

and manipulation of mental images, which facilitate various cognitive functions such as 

memory, problem-solving, and comprehension. Within this context, the focus is on visual 

imagery, specifically the capacity to "see" in the absence of a visual stimulus. Gauss famously 

argued that in mathematical argumentation, the scaffolding used to construct a proof should be 

concealed, leaving only the final product visible. In contrast, Hadamard (1945) emphasized the 

importance of informal reasoning, which involves thinking without words, relying on visual 

imagery and mental images that may not initially be expressible in language. This type of 
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reasoning also includes the exploration of ideas through activities akin to piecing together a 

puzzle. 

Mathematical learning is guided by two fundamental principles: inductive and deductive 

reasoning. Inductive reasoning involves deriving general principles from specific cases, while 

deductive reasoning works in the opposite direction, applying general principles to arrive at 

specific conclusions. The incorporation of imagery in mathematical learning is particularly 

aligned with inductive reasoning. Mason (2002) explains the purpose of assigning learning 

tasks in mathematics goes beyond merely obtaining correct answers. It also involves fostering 

an understanding of the broader applicability of various methods. As Mason (2002) suggests, 

generality emerges within the cognitive realm and is communicated through verbal 

descriptions, diagrams, and symbolic representations in the observable realm. Recognizing 

generality requires moving beyond specific instances to grasp overarching concepts, a process 

facilitated by descriptions that evoke mental imagery, as well as diagrams that are perceived as 

frames in a complex, film-like manner of processing mathematical information. 

Visual thinking is essential in understanding calculus concepts, a field that evolved to 

address quantitative physical problems beyond the scope of geometry and arithmetic. 

Differentiation and integration, the two core components of calculus, were developed to 

determine the gradient of a curve and to calculate the area of irregular shapes, respectively. 

Visual representations, often in the form of diagrams, play a critical role in aiding the 

comprehension of these concepts. The development of calculus is attributed to Newton and 

Leibniz, who approached its fundamental concepts differently—Newton through a geometric 

lens and Leibniz through an analytical perspective. At the undergraduate level, calculus 

encompasses topics such as real numbers, sequences, functions, limits, continuity, 

differentiation, and integration. Although diagrams are frequently employed to clarify concepts, 

proofs in calculus rarely rely on them, as much of the discipline involves the manipulation of 

functions (Miller, 2012).  

Visual Thinking in Learning Mathematical Analysis Concepts 

Mathematical analysis seeks to rigorously formalize and precisely articulate the intuitive 

concepts underlying calculus. While intuition offers a direct perception of truth or facilitates 

immediate reasoning, there are instances where the complexity of mathematical concepts 

necessitates more than intuition alone (Giaquinto, 2011; Hanna, 1991; Tall, 1991). In such 

cases, formal proof and validation become indispensable. 

The notion that visual thinking is often viewed with skepticism in the realm of 

mathematical analysis is particularly noteworthy. Visualization can play a significant role in 

various aspects, such as aiding in the comprehension of formulas, serving as a reminder of 

counterexamples, and inspiring ideas for proofs. However, the inherent limitation lies in the 

fact that visual thinking, by itself, may not always ensure or preserve truth in the rigorous 

context of mathematical analysis. 
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Methods  

This paper employs a conceptual research method, as outlined by Gilson and Goldberg (2015). 

The conceptual research method relies on the examination and synthesis of existing academic 

literature to explore and integrate diverse ideas and concepts related to a specific subject 

(Medvedeva et al., 2021). Rather than collecting and analyzing empirical data, this approach 

involves the analytical exploration and discussion of theoretical ideas, often using illustrative 

examples to support the arguments. It is a scientific method that advances intellectual discourse 

by synthesizing and integrating concepts from existing literature (Kraus et al., 2022). 

In this paper, visual images are presented as tools to facilitate the proof of five 

mathematical analysis theorems, which are often challenging for students. These theorems 

include the sum of the first n natural numbers, the sum rule of integration (a key property of 

definite integrals), the mean value theorem for derivatives, the mean value theorem for 

integrals, and Young’s Inequality.  

Results and Discussion 

Theorem 1: The sum of the first n natural number: 1+2+3 + … + n =
𝐧(𝐧+𝟏)

𝟐
.    

Understanding proof by induction is often challenging for students, largely due to its heavily 

theoretical presentation (Demeke, 2016). However, this theorem can be both proved and better 

understood through the use of visual representations. This paper leverages the concept of 

triangular numbers, as discussed by Giaquinto (2011), to support this argument. Triangular 

numbers serve as a prime example, representing the sum of the first k positive integers for any 

positive integer k. The first triangular number is 1, the second is 1 + 2, and, in general, the kth 

triangular number is represented as 1+2+3 + … + (k-1) + k = T(k). 

The objective of the proof is to establish a formula that enables the computation of the 

sum of the nth triangular number. Figure 1 presents both numerical and visual algebraic 

representations of this concept, illustrated using colored dots. T(n) represents the total number 

of dots, and the arrangement should visually resemble a triangle. 

Figure 1. Visual illustration of triangular numbers 

 

One can observe that T(k) = 1+2+3 + … + (k-1) + k. Figure 2 is the visual representation 

of aligning two triangles with the same number of dots but different colours to form a rectangle. 
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Figure 2. Visual illustration of T(k). 

One may observe that T(blue dots) = T(red dots). Hence the total number of dots in the 

rectangle is known to be the number of dots lengthwise multiplied by the number of dots width 

wise (l x w).   

 

2T(n) = T(blue dots) + T(red dots)  = Total number of dots of the rectangle =  n(n+1) . 

 

Therefore  𝑇(𝑛)  =
𝑛(𝑛+1)

2
  as required. 

 

Theorem 2. Visual proof of the sum rule of integration: ∫ [𝒇(𝒙) + 𝒈(𝒙)]𝒅𝒙
𝒃

𝒂
=

∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂
+ ∫ 𝒈(𝒙)

𝒃

𝒂
𝒅𝒙. 

The sum rule of integration is one of the properties of definite integrals. The following is the 

proof of the properties as found in Stewart (2008). The property states that if f and g are 

continuous functions in [a, b] then, 

 

∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥 =  ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

 

 

The visual presentation is shown in Figure 3. 

 

 

Figure 3. Visual diagram of the sum of two functions 
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The sum rule of integration asserts that the integral of a sum is equal to the sum of the integrals. 

Specifically, for positive functions, this rule implies that the area under the curve of f + g equals 

the sum of the areas under the curves of f and g. Figure 3 illustrates this concept, aiding in the 

comprehension of the rule's validity. In the figure, the area under f + g is represented by RED, 

BLUE, and GREEN. The area under f is depicted as RED, while the area under g is shown as 

RED and BLUE. Visually, the rule demonstrates that the area represented by RED, BLUE, and 

GREEN is equivalent to the sum of the areas represented by [RED+BLUE] and [RED]. This 

indicates that if f(x) ≤ g(x) for values of x in the interval [a,b], then the GREEN portion is always 

equal to the RED portion for positive functions. 

Proof 

∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥 =   lim
𝑛→∞

∑[𝑓(𝑥𝑖) + 𝑔(𝑥𝑖)]∆𝑥

𝑛

𝑖=1

𝑏

𝑎

 

      

=  lim
𝑛→∞

[∑ 𝑓(𝑥𝑖)∆𝑥𝑛
𝑖=1 + ∑ 𝑔(𝑥𝑖)∆𝑥𝑛

𝑖=1 ] 

 

= lim
𝑛→∞

∑ 𝑓(𝑥𝑖)∆𝑥𝑛
𝑖=1 + lim

𝑛→∞
∑ 𝑔(𝑥𝑖)∆𝑥𝑛

𝑖=1  

      

=  ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
, as required. 

 

Theorem 3. The Mean Value Theorem for Derivatives 

The primary method for visually representing a real-valued function is through the construction 

of its graph. As Stewart (2008) emphasizes, the graph effectively encapsulates the behavior or 

"life history" of the function. This graphical representation typically manifests as a line on the 

Cartesian plane (x-y plane), which may vary in form—ranging from straight and curved to 

jagged and discontinuous. A continuous function is depicted as an uninterrupted line, which 

can be traced without lifting the pencil. In contrast, a differentiable function is represented by 

a line that not only remains unbroken but also exhibits perceptual smoothness, free from abrupt 

changes in direction or jagged segments. 

The gradient of a function at any given point is visually represented by the ratio of the 

vertical distance to the horizontal distance. Utilizing these visual representations, one can 

illustrate the steps leading to the proof of the Mean Value Theorem for derivatives. The theorem 

is articulated as follows: 

 

Let f be a function that satisfies the following hypotheses: 

 f is continuous on the closed interval [a,b]. 

 f is differentiable on the open interval (a,b).  

 

Then there is a number c in (a,b) such that f'(c) = (f(b)-f(a))/(b-a) or equivalently f'(c) (b-a) 

=f(b)-f(a). 
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Visual Representation  

Before proving the theorem, it can be visually represented and interpreted. Figure 4 shows that 

the gradient (slope) of the line joining points (a, f(a)) and (b,f(b)) can be written as m = (f(b)-

f(a))/(b-a)  which is the same expression as on the right of the Mean Value Theorem. Since f'(c) 

is the gradient of the tangent line at the point (c, f(c )), the Mean Value Theorem in the form 

given above says that there is at least one point P(c, f(C )) on the graph where the gradient of 

the tangent line is the same as the gradient of the secant line joining (a,f(a)) and  (b, f(b)). 

 

 

Figure 4. Visual diagram for mean value theorem for derivatives 

Proof 

Apply Rolle’s Theorem to a new function h defined as the difference between f and the function 

whose graph is the secant line defined above (Stewart, 2008). The equation of the secant line 

can be written as  
𝑦−𝑓(𝑎)

𝑥−𝑎
=

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 or as y = f(a) + 

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎). So, as shown in Figure 

5. 

h(x) = f(x) –f(a) - –
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎). 

 

Firstly, it must be verified that ℎ satisfies the three conditions required for Rolle’s 

Theorem. 

The function h is continuous on [a,b] since h is a polynomial and hence differentiable. 

In fact, h'(x) = f'(x) – 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 . 

h(a) = f(a)-f(a) – 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑎 − 𝑎) = 0  and h(b) = f(b)-f(a) - 

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑏 − 𝑎) = 0 

Therefore h(a) = h(b). Since h satisfies the condition for Rolle’s Theorem that there is a 

number c in (a,b) such that h/(c ) = 0. Therefore 

0 = h/(c ) = f/(c )= – 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
  to result in  f/(c) = – 

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
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Figure 5. Visual illustration of the relationship between f(x), h(x), and equation of the secant 

line 

Comments    

The challenge frequently arises when students encounter the introduction of the function h(x) 

in a proof presented in a refined manner. Students may question the purpose of including such 

a function. However, the clarity provided by the illustration in Figure 4 helps to address this 

difficulty effectively. 

The diagrams above vividly illustrate the effectiveness of visual reasoning in 

comprehending concepts in mathematical analysis. The proof progresses by tracing the logical 

steps backward from the visual representation to the formulation of a formal mathematical 

statement. 

 

Theorem 4. The Mean Value Theorem for Integrals 

Visual arguments alone are rarely reliable as pathways to discovery. Nevertheless, visualization 

plays a critical role in analytic discovery by frequently stimulating ideas for proofs (Giaquinto, 

2011). The visual representation of the Mean Value Theorem for integrals further illustrates 

how analytical reasoning can emerge from visual insights. The theorem is stated as follows:   

If f is continuous on [a,b] then there is a point c in  (a,b) such that 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝑐)(𝑏 − 𝑎)
𝑏

𝑎
. 

 

Visual Representation  

Figure 6 provides a visual representation of the theorem's statement. ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  represents the 

area under the curve y= f(x) from a to b. The area under the curve limited between the lines x=a 

and x=b is YELLOW+GREEN+ BLUE. The right-hand part of the theorem [f(c)(b-a)] 

represents the area of the rectangle whose width is (b-a) and length f(c) which visually is 

YELLOW + GREEN + RED.  Without losing generality one can observe that 

YELLOW+GREEN+BLUE = YELLOW + GREEN +RED which implies that for some c in 

the interval (a,b) the RED part is always equal to the BLUE part. The proof then is going to 

guarantee the existence of this c. 
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Figure 6. Visual illustration of the Mean Value Theorem for Integrals 

 

Proof 

Since f is continuous on [a,b], it is integrable on [a,b]. Moreover since [a,b] is closed and 

bounded, it means that f attains its maximum and minimum values M and m, respectively on 

[a,b]. In other words, there are points x0 and x1 in [a,b] such that M= f(x0) and m = f(x1), see 

Figure 7 for a visual representation of the Mean Value Theorem for Integrals (Stewart, 2008). 

 

 

Figure 7. Mean Value Theorem for Integrals visual representation. 

Thus m≤ 𝑓(𝑥) ≤ 𝑀  which implies m(b-a) ≤  ∫ 𝑓(𝑥)𝑑𝑥 ≤ 𝑀(𝑏 − 𝑎) 
𝑏

𝑎
……………ӿ 

Therefore m ≤
1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
≤ 𝑀. 

Now let𝜇 =
1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 , implies that m≤ 𝜇 ≤ 𝑀  . Therefore, there exist c ∈ (𝑎, 𝑏)  such 

that f(c) = 𝜇 .  Thus  ∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝑐)(𝑏 − 𝑎)
𝑏

𝑎
 as required. 

 

Comment 
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Note that the key statement for the proof is the one marked ӿ. This statement is a summary of 

the visual representation of Figure 4. If A = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  ,  A1 = m(b-a) and  

A2 = M(b-a) then clearly A1≤ 𝐴 ≤A2 and the rest is algebra. 

Usually, it is difficult for undergraduate learners to comprehend the above proof if it is 

not accompanied by the above diagrams. 

 

Theorem 5: Young’s Inequality 

Young's Inequality is an important auxiliary result used in the derivation of Hölder's Inequality, 

which is a pivotal step in proving the Minkowski Inequality. Mastery of these inequalities is 

essential for the study of normed linear spaces, typically covered in postgraduate functional 

analysis courses. The inclusion of Young's Inequality in this context highlights the crucial role 

of visualization in enhancing the understanding of mathematical analysis. The lemma is stated 

as follows: 

Let p and q be conjugate exponents, with 1<p, q <∞ and α, β ≥0. 

Then  ∝ 𝛽 ≤
∝𝑝

𝑝
+

𝛽𝑞

𝑞
 - Young’s inequality (Mitrinovic & Vasic, 1970; Moharana, 2014). 

 

Visual Representation 

If p and q are conjugate exponents, then 𝑝 − 1 =
1

𝑞−1
  which implies that if f(t) = tp-1 then  

f-1(t) = tq-1. This statement is represented in Figure 8. 

 

 

 

Figure 8. Visual diagram of the idea of the proof of Young’s Inequality 

Examining the diagram, we can infer that the area of the rectangle, with a width of β 

and length ∝, is less than or equal to the combined area of the BLUE part and the RED part. 

This relationship can be expressed as: 

∝ 𝛽 ≤  ∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓−1(𝑡)𝑑𝑡 =  ∫ 𝑡𝑝−1𝑑𝑡 + ∫ 𝑡𝑞−1𝑑𝑡 =  
∝𝑝

𝑝
+

𝛽𝑞

𝑞

𝛽

0

𝛼

0

𝛽

0

𝛼

0
 as required. 

 

Comment 

It can be noted that the key statement for the analytical proof is the statement above represented 

by ӿ, f(α) = 
∝𝑝

𝑝
+

𝛽𝑞

𝑞
 -  ∝ 𝛽 which is a deduction of the visual observation in Figure 8. Generally, 

http://www.proofwiki.org/wiki/File:Holder's_Ineq.jpg
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if the above theorem is proved without the diagram, it presents difficulties, especially in 

justifying the choice of f(α). The idea of the proof is backward working from imagery to a 

formal mathematical statement. 

The examples provided in this paper emphasize the pivotal role of visualization in proving 

fundamental theorems in mathematical analysis. In the context of proving theorems, lemmas, 

and properties, visualization often serves as the initial foundation from which concepts and 

methodologies are developed. It also acts as an efficient means of conveying mathematical 

ideas. The examples discussed herein illustrate that while visual images can be instrumental in 

developing proofs, they are often discarded once formalized. 

Guzman (2002) highlights the remarkable utility of visualization not only in the initial 

process of mathematization but also in the teaching and learning of mathematics. This 

underscores the importance of developing visual skills and introducing them to individuals new 

to the subject. This principle extends beyond geometry, where the importance of visual 

elements is clear, to mathematical analysis. In analysis, ideas, concepts, and methods are rich 

in visual, intuitive, and geometric content that frequently emerges in the mental processes of 

analysts. 

Although Giaquinto (2011) suggests that visual arguments are rarely reliable for drawing 

analytic conclusions and are infrequently pathways to discovery, the acknowledgment of 

visualization's critical role in analytic discovery is significant. While visual thinking is often 

deemed unreliable for concluding mathematical analysis, due to the nature of concepts that may 

not be visually representable or defy visuospatial expectations, two examples illustrating how 

visualization can be misleading are encountered in the construction of graphs for certain 

functions, such as: 

 

𝑓(𝑥) =  𝑥2 − 2, for x real in [1,2], and  

 

 g(x) = {
𝑥2 − 2, 𝑓𝑜𝑟 𝑥 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛 [1,2]

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The curves of these functions exhibit no distinct visual differences. For any given rational 

number, there exist rational numbers arbitrarily close on both sides, resulting in an infinite 

density of rational numbers between any two of them. As a result, the curve of g(x) will not 

exhibit any noticeable gaps and is visually indistinguishable from the curve of f(x). It can be 

observed that g does not attain a zero value since there is no rational x for which x2−2=0, despite 

the function satisfying Bolzano’s Theorem. 

In general, many visual arguments may appear to substantiate the validity of certain 

propositions in mathematical analysis, sometimes leading to the belief that they constitute 

proof. However, these visual arguments often only provide a conceptual foundation for a formal 

proof. Nevertheless, such visual arguments are highly valuable. With increased experience, 

experts can more readily transition from a visually presented idea to an analytical proof. Thus, 
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visual arguments are of significant utility for experts, aiding in the proof development process 

and enhancing comprehension within the field. 

Conclusion 

Changing representation registers can be pivotal in enhancing mathematical understanding. 

This paper illustrates how visual representations can facilitate students' access to mathematical 

knowledge, as evidenced by examples such as the proofs of the sum of the first n natural 

numbers, the sum rule of integration, the Mean Value Theorem for derivatives, and the Mean 

Value Theorem for integrals. Consequently, we advocate for the integration of visual 

representations in the teaching of mathematical analysis proofs whenever feasible. This 

approach can render proofs more accessible to students and foster a deeper comprehension of 

mathematical concepts.  
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