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Abstract

Visual images are frequently utilized to elucidate concepts in general mathematics and
geometry; however, their application in mathematical analysis remains uncommon. This paper
demonstrates how visual imagery can enhance the proof of certain theorems in mathematical
analysis. It emphasizes the importance of visualization in the learning and understanding of
mathematical concepts, particularly within mathematical analysis, where diagrams are seldom
employed. The paper focuses on the reasoning processes used by mathematicians in proving
selected fundamental theorems of mathematical analysis. It provides illustrative examples
where visual images are instrumental in performing specific subtasks within proof development
and in completing the proofs. The proofs discussed include the sum of the first n natural
numbers, the sum rule of integration, the mean value theorem for derivatives, the mean value
theorem for integrals, and Young’s Inequality. This paper underscores that visual images serve
not only as persuasive tools but also as bridges between symbolic representations and real-
world understanding.

Keywords: definite integrals, imagery, mathematical analysis, mean value theorem,
visualisation

Introduction

The field of mathematics is rich with visual relationships inherent in its concepts, ideas, and
methods, which can be intuitively represented in various ways. Recognizing the crucial role of
visual thinking and visualization in mathematics learning, educators often integrate visual
representations, such as images or diagrams, into the teaching of mathematical concepts. This
approach involves understanding the importance of students' visualization processes, their
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abilities, and the pedagogical strategies designed to enhance instruction by establishing visual
learning environments (Gates, 2018; Giaquinto, 2011; Makina, 2010).

In contrast to the abstract nature typically associated with the logico-deductive formal
proofs used by mathematicians, research has shown that visualization plays a central role in the
creative, exploratory, and proof processes that lead to new results. An illustrative example is
the anecdote of Norbert Wiener, who resolved a complex proof with the assistance of enigmatic
pictures, highlighting the power of visual thinking in mathematics (Guzman, 2002). Similarly,
some scholars have successfully employed visual representations to prove various
mathematical theorems, such as the area of a circle (Browne, 2022), the Pythagorean theorem
(Foo et al., 1999; Santos & Quaresma, 2010), and the sum of the first n odd numbers (Relaford-
Doyle etal., 2017). Researchers like Ahmad (2021), Arcavi (2003), Giaquinto (2011), Guncaga
et al. (2019), Guzman (2002), and Svitek et al. (2022) have emphasized the importance of
visualization and visual reasoning in the process of learning mathematics. Visual images can
significantly enhance the understanding of complex mathematical concepts by rendering
abstract ideas more concrete and accessible (Coessens et al., 2021; Quinnell, 2022; Zakelj &
Klancar, 2022). Furthermore, they serve as valuable tools or strategies for solving mathematical
problems (Barbosa & Vale, 2021; Kaitera & Harmoinen, 2022; Parame-Decin, 2023) and
facilitate creativity in mathematical problem-solving (Bicer et al., 2023; Kell et al., 2013; Vale
& Barbosa, 2023). Stylianou and Silver (2004) found that expert problem solvers utilize visual
representations "as dynamic objects to explore the problem space qualitatively, develop a better
understanding of the problem situation, and guide their solution planning and execution of
problem-solving activity" (p. 353).

However, Stylianou and Silver (2004) also noted that the use of visual representations
presents challenges for many students in mathematical problem-solving, as visual images can
be complex collections of ideas that may not be easily accessible to all learners. This difficulty
may stem from students' limited exposure to visual images in mathematics instruction. Such
challenges often result in a disconnect between the formal aspects of mathematical analysis and
the underlying meanings they are intended to convey (Eisenberg & Dreyfus, 1991). In his study
"Adding Structure to the Transition Process to Advanced Mathematical Activity," Engelbrecht
(2010) explored the challenges faced by undergraduate students as they transition from calculus
to mathematical analysis. He observed that this shift can be particularly difficult, sometimes
even traumatic, and advocated for a methodological approach that integrates visualization
techniques with symbolic reasoning to enhance conceptual understanding and mitigate these
difficulties.

Although numerous studies have demonstrated the critical role of visualization in the
teaching and learning of various mathematical concepts, the majority of this research has
focused on general mathematics and geometry. There appears to be a scarcity of literature on
the role of visualization in learning mathematical analysis. Mathematical analysis, typically
taught after calculus at the undergraduate level, relies on a rigorous logical foundation grounded
in the axioms of real numbers. It emphasizes the importance of understanding proofs and the
reasoning behind specific steps. Grouws (1992) suggested that organizing mathematical
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knowledge around key components such as definitions, lemmas, propositions, theorems,
examples, and counterexamples is essential for students to effectively comprehend and prove
mathematical statements. This structured approach facilitates understanding, logical reasoning,
and the development of proficiency in mathematical problem-solving.

At the undergraduate level, mathematical thinking predominantly relies on the definitions
of mathematical terms rather than the use of visual images. Nurwahyu and Tinungki (2020)
elucidated the relationship between concept image and concept definition, highlighting the
importance of visualization in forming mental representations of complex mathematical
concepts. Visual elements contribute significantly to intuitive reasoning, which can be
categorized into diagrammatic reasoning, analogical reasoning, and the use of prototypes
(Gates, 2018; Presmeg, 2020).

There is a prevailing belief that visualization in mathematical analysis is heuristic rather
than a means of discovery or proof. Barwise and Etchemendy (2019) noted that “despite the
obvious importance of visual images in human cognitive activities, visual representation
remains a second-class citizen in both the theory and practice of mathematics. In particular, we
are all taught to look askance at proofs that make crucial use of diagrams, graphs, or other non-
linguistic forms of representation” (p. 160). This paper argues that certain theorems may be
better understood when accompanied by diagrams. As Barker-Plummer and Bailin (1997)
succinctly stated, "visualization distinguishes following a proof from seeing it to be true™ (p.
26). We present five examples where visual images can be instrumental in facilitating the proofs
of mathematical analysis theorems. Demeke (2016) contended that while multiple proofs may
exist for a given mathematical theorem, the choice of a particular proof should be based on its
value in a given context. The author emphasized that “mathematicians may value a proof for
reasons such as comprehensibility, explanatory power, and originality” (p. 11). Visual images
can help to clarify proofs and enhance their comprehension.

In the following sections, we discuss the role of imagery in mathematics and visual
thinking in learning mathematical analysis concepts. It was followed by an overview of the
conceptual research method and a discussion on how visual representations can be employed
to enhance the understanding of five fundamental mathematical analysis concepts.

Imagery in Mathematics

Imagery is a cognitive process that involves the mental representation of entities not currently
perceived by the senses (Goldstein, 2011; Sternberg, 2009). This process includes the creation
and manipulation of mental images, which facilitate various cognitive functions such as
memory, problem-solving, and comprehension. Within this context, the focus is on visual
imagery, specifically the capacity to "see™ in the absence of a visual stimulus. Gauss famously
argued that in mathematical argumentation, the scaffolding used to construct a proof should be
concealed, leaving only the final product visible. In contrast, Hadamard (1945) emphasized the
importance of informal reasoning, which involves thinking without words, relying on visual
imagery and mental images that may not initially be expressible in language. This type of
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reasoning also includes the exploration of ideas through activities akin to piecing together a
puzzle.

Mathematical learning is guided by two fundamental principles: inductive and deductive
reasoning. Inductive reasoning involves deriving general principles from specific cases, while
deductive reasoning works in the opposite direction, applying general principles to arrive at
specific conclusions. The incorporation of imagery in mathematical learning is particularly
aligned with inductive reasoning. Mason (2002) explains the purpose of assigning learning
tasks in mathematics goes beyond merely obtaining correct answers. It also involves fostering
an understanding of the broader applicability of various methods. As Mason (2002) suggests,
generality emerges within the cognitive realm and is communicated through verbal
descriptions, diagrams, and symbolic representations in the observable realm. Recognizing
generality requires moving beyond specific instances to grasp overarching concepts, a process
facilitated by descriptions that evoke mental imagery, as well as diagrams that are perceived as
frames in a complex, film-like manner of processing mathematical information.

Visual thinking is essential in understanding calculus concepts, a field that evolved to
address quantitative physical problems beyond the scope of geometry and arithmetic.
Differentiation and integration, the two core components of calculus, were developed to
determine the gradient of a curve and to calculate the area of irregular shapes, respectively.
Visual representations, often in the form of diagrams, play a critical role in aiding the
comprehension of these concepts. The development of calculus is attributed to Newton and
Leibniz, who approached its fundamental concepts differently—Newton through a geometric
lens and Leibniz through an analytical perspective. At the undergraduate level, calculus
encompasses topics such as real numbers, sequences, functions, limits, continuity,
differentiation, and integration. Although diagrams are frequently employed to clarify concepts,
proofs in calculus rarely rely on them, as much of the discipline involves the manipulation of
functions (Miller, 2012).

Visual Thinking in Learning Mathematical Analysis Concepts

Mathematical analysis seeks to rigorously formalize and precisely articulate the intuitive
concepts underlying calculus. While intuition offers a direct perception of truth or facilitates
immediate reasoning, there are instances where the complexity of mathematical concepts
necessitates more than intuition alone (Giaquinto, 2011; Hanna, 1991; Tall, 1991). In such
cases, formal proof and validation become indispensable.

The notion that visual thinking is often viewed with skepticism in the realm of
mathematical analysis is particularly noteworthy. Visualization can play a significant role in
various aspects, such as aiding in the comprehension of formulas, serving as a reminder of
counterexamples, and inspiring ideas for proofs. However, the inherent limitation lies in the
fact that visual thinking, by itself, may not always ensure or preserve truth in the rigorous
context of mathematical analysis.

GENE

350

SRV
*b_fi_dv'.’




Last Name of Author 1, Last Name of Author 2, etc, Visualization techniques for proofs: implications ...

Methods

This paper employs a conceptual research method, as outlined by Gilson and Goldberg (2015).
The conceptual research method relies on the examination and synthesis of existing academic
literature to explore and integrate diverse ideas and concepts related to a specific subject
(Medvedeva et al., 2021). Rather than collecting and analyzing empirical data, this approach
involves the analytical exploration and discussion of theoretical ideas, often using illustrative
examples to support the arguments. It is a scientific method that advances intellectual discourse
by synthesizing and integrating concepts from existing literature (Kraus et al., 2022).

In this paper, visual images are presented as tools to facilitate the proof of five
mathematical analysis theorems, which are often challenging for students. These theorems
include the sum of the first n natural numbers, the sum rule of integration (a key property of
definite integrals), the mean value theorem for derivatives, the mean value theorem for
integrals, and Young’s Inequality.

Results and Discussion

n(n+1)
2
Understanding proof by induction is often challenging for students, largely due to its heavily

theoretical presentation (Demeke, 2016). However, this theorem can be both proved and better
understood through the use of visual representations. This paper leverages the concept of
triangular numbers, as discussed by Giaquinto (2011), to support this argument. Triangular
numbers serve as a prime example, representing the sum of the first k positive integers for any
positive integer k. The first triangular number is 1, the second is 1 + 2, and, in general, the kth
triangular number is represented as /+2+3 + ... + (k-1) + k = T(k).

The objective of the proof is to establish a formula that enables the computation of the
sum of the nth triangular number. Figure 1 presents both numerical and visual algebraic
representations of this concept, illustrated using colored dots. T(n) represents the total number
of dots, and the arrangement should visually resemble a triangle.

Theorem 1: The sum of the first n natural number: 71+24+3 +... +n =

n 1 2 3 4 5 k
T(n)asa 1 1+2 1+2+3 1+24+3+4 1+2+3+4+5 [+2+...+k
sum
(NN IXK] o0 o
T(.n)asa o @o b o000 00 - ®
triangle ® o0 P 00 O
@ 00
@] e 0
® .
O
T(n) 1 3 6 10 15 1+2+... +k

Figure 1. Visual illustration of triangular numbers

One can observethat T(k) = 1+2+3 + ... + (k-1) + k. Figure 2 is the visual representation
of aligning two triangles with the same number of dots but different colours to form a rectangle.
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n+1

Figure 2. Visual illustration of T(k).

One may observe that T(blue dots) = T(red dots). Hence the total number of dots in the
rectangle is known to be the number of dots lengthwise multiplied by the number of dots width
wise (I x w).

2T(n) = T(blue dots) + T(red dots) = Total number of dots of the rectangle = n(n+1) .

Therefore 7(n) =" as required.

Theorem 2. Visual proof of the sum rule of integration: fab[f(x)+g(x)]dx=

f: f(x)dx + f: g(x) dx.

The sum rule of integration is one of the properties of definite integrals. The following is the
proof of the properties as found in Stewart (2008). The property states that if f and g are
continuous functions in [a, b] then,

b b b
f [FG0) + gGo)ldx = f f)dx + f 9()dx

The visual presentation is shown in Figure 3.

y-axis

flx)+gix)

a b

Figure 3. Visual diagram of the sum of two functions
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The sum rule of integration asserts that the integral of a sum is equal to the sum of the integrals.
Specifically, for positive functions, this rule implies that the area under the curve of f + g equals
the sum of the areas under the curves of f and g. Figure 3 illustrates this concept, aiding in the
comprehension of the rule's validity. In the figure, the area under f + g is represented by RED,
BLUE, and GREEN. The area under f is depicted as RED, while the area under g is shown as
RED and BLUE. Visually, the rule demonstrates that the area represented by RED, BLUE, and
GREEN is equivalent to the sum of the areas represented by [RED+BLUE] and [RED]. This
indicates that if f(x) <g(x) for values of x in the interval [a,b], then the GREEN portion is always
equal to the RED portion for positive functions.

Proof

b n
[ e+ g = Jim Y1rG + gGeolax

= 711_1)210[ =1 f(xp)Ax + Xing g(x;)Ax]
:gl_r){)lo Yi=1f (x)Ax + 711_{{)10 2i=19(x;)Ax
= ff f(x)dx + ffg(x)dx, as required.

Theorem 3. The Mean Value Theorem for Derivatives

The primary method for visually representing a real-valued function is through the construction
of its graph. As Stewart (2008) emphasizes, the graph effectively encapsulates the behavior or
"life history" of the function. This graphical representation typically manifests as a line on the
Cartesian plane (x-y plane), which may vary in form—ranging from straight and curved to
jagged and discontinuous. A continuous function is depicted as an uninterrupted line, which
can be traced without lifting the pencil. In contrast, a differentiable function is represented by
a line that not only remains unbroken but also exhibits perceptual smoothness, free from abrupt
changes in direction or jagged segments.

The gradient of a function at any given point is visually represented by the ratio of the
vertical distance to the horizontal distance. Utilizing these visual representations, one can
illustrate the steps leading to the proof of the Mean Value Theorem for derivatives. The theorem
is articulated as follows:

Let f be a function that satisfies the following hypotheses:
f is continuous on the closed interval [a,b].
f is differentiable on the open interval (a,b).

Then there is a number c in (a,b) such that f'(c) = (f(b)-f(a))/(b-a) or equivalently f'(c) (b-a)
=f(b)-f(a).
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Visual Representation

Before proving the theorem, it can be visually represented and interpreted. Figure 4 shows that
the gradient (slope) of the line joining points (a, f(a)) and (b,f(b)) can be written as m = (f(b)-
f(a))/(b-a) which is the same expression as on the right of the Mean Value Theorem. Since f'(c)
is the gradient of the tangent line at the point (c, f(c )), the Mean Value Theorem in the form
given above says that there is at least one point P(c, f(C )) on the graph where the gradient of
the tangent line is the same as the gradient of the secant line joining (a,f(a)) and (b, f(b)).

/

Figure 4. Visual diagram for mean value theorem for derivatives

Proof
Apply Rolle’s Theorem to a new function h defined as the difference between f and the function
whose graph is the secant line defined above (Stewart, 2008). The equation of the secant line

yr@ (b) f(a) —(b;:z(a) (x — a). So, as shown in Figure

can be written as orasy="f(a) +

5.

h(x) = f(x) f(a) - L2LD (x — a).

Firstly, it must be verified that /4 satisfies the three conditions required for Rolle’s

Theorem.
The function h is continuous on [a,b] since h is a polynomial and hence differentiable.

In fact, h(x) = F(x) - L2
h(a) = f(a)-f(a) - %(a — a) = 0 and h(b) = f(b)-f(a) - L2LE (h —a) = 0

Therefore h(a) = h(b). Since h satisfies the condition for Rolle’s Theorem that there is a
number c in (a,b) such that h/(c ) = 0. Therefore

0=h(c) =F(c)=-L2LD o resultin f/(c) = - LOLD
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y-axis

f(x) -h(x)

x-axis

a b
Figure 5. Visual illustration of the relationship between f(x), h(x), and equation of the secant
line

Comments

The challenge frequently arises when students encounter the introduction of the function h(x)
in a proof presented in a refined manner. Students may question the purpose of including such
a function. However, the clarity provided by the illustration in Figure 4 helps to address this
difficulty effectively.

The diagrams above vividly illustrate the effectiveness of visual reasoning in
comprehending concepts in mathematical analysis. The proof progresses by tracing the logical
steps backward from the visual representation to the formulation of a formal mathematical
statement.

Theorem 4. The Mean Value Theorem for Integrals
Visual arguments alone are rarely reliable as pathways to discovery. Nevertheless, visualization
plays a critical role in analytic discovery by frequently stimulating ideas for proofs (Giaquinto,
2011). The visual representation of the Mean Value Theorem for integrals further illustrates
how analytical reasoning can emerge from visual insights. The theorem is stated as follows:

If f is continuous on [ab] then there is a point ¢ in (ab) such that

[} f)dx = f(c) (b - a).

Visual Representation

Figure 6 provides a visual representation of the theorem's statement. ff f(x)dx represents the
area under the curve y= f(x) from a to b. The area under the curve limited between the lines x=a
and x=b is YELLOW+GREEN+ BLUE. The right-hand part of the theorem [f(c)(b-a)]
represents the area of the rectangle whose width is (b-a) and length f(c) which visually is
YELLOW + GREEN + RED. Without losing generality one can observe that
YELLOW+GREEN+BLUE = YELLOW + GREEN +RED which implies that for some c in
the interval (a,b) the RED part is always equal to the BLUE part. The proof then is going to
guarantee the existence of this c.
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y-axis

a [

Figure 6. Visual illustration of the Mean Value Theorem for Integrals

Proof

Since f is continuous on [a,b], it is integrable on [a,b]. Moreover since [a,b] is closed and
bounded, it means that f attains its maximum and minimum values M and m, respectively on
[a,b]. In other words, there are points xo and X1 in [a,b] such that M= f(xo) and m = f(x1), see
Figure 7 for a visual representation of the Mean Value Theorem for Integrals (Stewart, 2008).

Y-AXIS

y=f(x)

a c b

Figure 7. Mean Value Theorem for Integrals visual representation.

Thus m< f(x) < M which implies m(b-a) < [ f(x)dx < M(b—a) ..ocvreern.. x
Therefore m < ﬁf:f(x)dx <M.
Now letu = ﬁf:f(x)dx , Implies that m< u < M . Therefore, there exist ¢ € (a, b) such

that f(c) = u . Thus f:f(x)dx = f(c)(b — a) as required.
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Note that the key statement for the proof is the one marked x. This statement is a summary of
the visual representation of Figure 4. If A = f; f(x)dx , Al =m(b-a) and

A2 = M(b-a) then clearly A1< A <A2 and the rest is algebra.
Usually, it is difficult for undergraduate learners to comprehend the above proof if it is
not accompanied by the above diagrams.

Theorem 5: Young’s Inequality

Young's Inequality is an important auxiliary result used in the derivation of Holder's Inequality,
which is a pivotal step in proving the Minkowski Inequality. Mastery of these inequalities is
essential for the study of normed linear spaces, typically covered in postgraduate functional
analysis courses. The inclusion of Young's Inequality in this context highlights the crucial role
of visualization in enhancing the understanding of mathematical analysis. The lemma is stated
as follows:

Let p and q be conjugate exponents, with 1<p, q <co and a, B >0.

Then < f < %’ + %q - Young’s inequality (Mitrinovic & Vasic, 1970; Moharana, 2014).
Visual Representation

If p and g are conjugate exponents, thenp —1 = ﬁ which implies that if f(t) = tp-1 then
f-1(t) = tg-1. This statement is represented in Figure 8.

Figure 8. Visual diagram of the idea of the proof of Young’s Inequality

Examining the diagram, we can infer that the area of the rectangle, with a width of 8
and length «, is less than or equal to the combined area of the BLUE part and the RED part.
This relationship can be expressed as:

14 q .
x B < foaf(t)dt + foﬁf_l(t)dt = fO“ tP~1lde + foﬁ ti7ldt = % + % as required.
Comment
It can be noted that the key statement for the analytical proof is the statement above represented
by x, f(a) = %p + [;—q - « B which is a deduction of the visual observation in Figure 8. Generally,
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if the above theorem is proved without the diagram, it presents difficulties, especially in
justifying the choice of f(a). The idea of the proof is backward working from imagery to a
formal mathematical statement.

The examples provided in this paper emphasize the pivotal role of visualization in proving
fundamental theorems in mathematical analysis. In the context of proving theorems, lemmas,
and properties, visualization often serves as the initial foundation from which concepts and
methodologies are developed. It also acts as an efficient means of conveying mathematical
ideas. The examples discussed herein illustrate that while visual images can be instrumental in
developing proofs, they are often discarded once formalized.

Guzman (2002) highlights the remarkable utility of visualization not only in the initial
process of mathematization but also in the teaching and learning of mathematics. This
underscores the importance of developing visual skills and introducing them to individuals new
to the subject. This principle extends beyond geometry, where the importance of visual
elements is clear, to mathematical analysis. In analysis, ideas, concepts, and methods are rich
in visual, intuitive, and geometric content that frequently emerges in the mental processes of
analysts.

Although Giaquinto (2011) suggests that visual arguments are rarely reliable for drawing
analytic conclusions and are infrequently pathways to discovery, the acknowledgment of
visualization's critical role in analytic discovery is significant. While visual thinking is often
deemed unreliable for concluding mathematical analysis, due to the nature of concepts that may
not be visually representable or defy visuospatial expectations, two examples illustrating how
visualization can be misleading are encountered in the construction of graphs for certain
functions, such as:

f(x) = x*—2,forxrealin[1,2], and

o(x) = {xz — 2, for x rational in [1,2]
undefined, otherwise

The curves of these functions exhibit no distinct visual differences. For any given rational
number, there exist rational numbers arbitrarily close on both sides, resulting in an infinite
density of rational numbers between any two of them. As a result, the curve of g(x) will not
exhibit any noticeable gaps and is visually indistinguishable from the curve of f(x). It can be
observed that g does not attain a zero value since there is no rational x for which x2>-2=0, despite
the function satisfying Bolzano’s Theorem.

In general, many visual arguments may appear to substantiate the validity of certain
propositions in mathematical analysis, sometimes leading to the belief that they constitute
proof. However, these visual arguments often only provide a conceptual foundation for a formal
proof. Nevertheless, such visual arguments are highly valuable. With increased experience,
experts can more readily transition from a visually presented idea to an analytical proof. Thus,
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visual arguments are of significant utility for experts, aiding in the proof development process
and enhancing comprehension within the field.

Conclusion

Changing representation registers can be pivotal in enhancing mathematical understanding.
This paper illustrates how visual representations can facilitate students' access to mathematical
knowledge, as evidenced by examples such as the proofs of the sum of the first n natural
numbers, the sum rule of integration, the Mean Value Theorem for derivatives, and the Mean
Value Theorem for integrals. Consequently, we advocate for the integration of visual
representations in the teaching of mathematical analysis proofs whenever feasible. This
approach can render proofs more accessible to students and foster a deeper comprehension of
mathematical concepts.
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